List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6818898/publications.pdf Version: 2024-02-01

EVA CODEV

#	Article	IF	CITATIONS
1	Magnetoâ€Endosomalytic Therapy for Cancer. Advanced Healthcare Materials, 2022, 11, e2101010.	3.9	6
2	Exploiting the tumor-suppressive activity of the androgen receptor by CDK4/6 inhibition in castration-resistant prostate cancer. Molecular Therapy, 2022, 30, 1628-1644.	3.7	10
3	Detecting Neuroendocrine Prostate Cancer Through Tissue-Informed Cell-Free DNA Methylation Analysis. Clinical Cancer Research, 2022, 28, 928-938.	3.2	29
4	Small extracellular vesicle-mediated <i>ITGB6</i> siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells. Cancer Biology and Therapy, 2022, 23, 173-185.	1.5	12
5	Proteomic and Transcriptomic Profiling Reveals Mitochondrial Oxidative Phosphorylation as Therapeutic Vulnerability in Androgen Receptor Pathway Active Prostate Tumors. Cancers, 2022, 14, 1739.	1.7	4
6	HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nature Genetics, 2022, 54, 670-683.	9.4	39
7	Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 3127-3140.	3.2	11
8	MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nature Communications, 2022, 13, 2559.	5.8	56
9	Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight, 2022, 7, .	2.3	9
10	Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2022, 28, 3509-3525.	3.2	11
11	Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5–SN38 Antibody–drug Conjugate in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2021, 27, 759-774.	3.2	34
12	Ferroptosis Inducers Are a Novel Therapeutic Approach for Advanced Prostate Cancer. Cancer Research, 2021, 81, 1583-1594.	0.4	140
13	Differential expression of αVβ3 and αVβ6 integrins in prostate cancer progression. PLoS ONE, 2021, 16, e0244985.	1.1	16
14	Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature. PLoS ONE, 2021, 16, e0245602.	1.1	5
15	Data of relative mRNA and protein abundances of androgen receptor splice variants in castration-resistant prostate cancer. Data in Brief, 2021, 34, 106774.	0.5	2
16	A bladderÂcancerÂpatient-derived xenograft displays aggressive growth dynamics in vivo and in organoid culture. Scientific Reports, 2021, 11, 4609.	1.6	14
17	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	5.8	70
18	Targeting Feedforward Loops Formed by Nuclear Receptor RORÎ ³ and Kinase PBK in mCRPC with Hyperactive AR Signaling. Cancers, 2021, 13, 1672.	1.7	9

#	Article	IF	CITATIONS
19	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight, 2021, 6, .	2.3	22
20	Increased transcription and high translation efficiency lead to accumulation of androgen receptor splice variant after androgen deprivation therapy. Cancer Letters, 2021, 504, 37-48.	3.2	17
21	Selective androgen receptor modulators activate the canonical prostate cancer androgen receptor program and repress cancer growth. Journal of Clinical Investigation, 2021, 131, .	3.9	23
22	MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Scientific Reports, 2021, 11, 13305.	1.6	20
23	BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program. Clinical Cancer Research, 2021, 27, 4923-4936.	3.2	33
24	RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer. Cancer Research, 2021, 81, 4736-4750.	0.4	18
25	Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nature Communications, 2021, 12, 4217.	5.8	30
26	Altered glucuronidation deregulates androgen dependent response profiles and signifies castration resistance in prostate cancer. Oncotarget, 2021, 12, 1886-1902.	0.8	2
27	Reciprocal <scp>YAP1</scp> loss and <scp>INSM1</scp> expression in neuroendocrine prostate cancer. Journal of Pathology, 2021, 255, 425-437.	2.1	12
28	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	5.8	59
29	Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nature Communications, 2021, 12, 7033.	5.8	27
30	Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight, 2021, 6, .	2.3	15
31	Durable Response of Enzalutamide-resistant Prostate Cancer to Supraphysiological Testosterone Is Associated with a Multifaceted Growth Suppression and Impaired DNA Damage Response Transcriptomic Program in Patient-derived Xenografts. European Urology, 2020, 77, 144-155.	0.9	46
32	Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2020, 26, 1667-1677.	3.2	30
33	Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nature Genetics, 2020, 52, 790-799.	9.4	174
34	Inhibition of Serum Response Factor Improves Response to Enzalutamide in Prostate Cancer. Cancers, 2020, 12, 3540.	1.7	4
35	Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nature Genetics, 2020, 52, 1011-1017.	9.4	78
36	Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 2020, 22, 253-262.	2.3	19

#	Article	IF	CITATIONS
37	Targeting RET Kinase in Neuroendocrine Prostate Cancer. Molecular Cancer Research, 2020, 18, 1176-1188.	1.5	23
38	Androgen receptor-induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene, 2020, 39, 5390-5404.	2.6	22
39	Antitumor Activity of the IGF-1/IGF-2–Neutralizing Antibody Xentuzumab (BI 836845) in Combination with Enzalutamide in Prostate Cancer Models. Molecular Cancer Therapeutics, 2020, 19, 1059-1069.	1.9	12
40	Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress. Cell Reports, 2020, 31, 107669.	2.9	167
41	The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 661-669.	2.0	33
42	Telomere lengths differ significantly between small-cell neuroendocrine prostate carcinoma and adenocarcinoma of the prostate. Human Pathology, 2020, 101, 70-79.	1.1	5
43	Taxane resistance in prostate cancer is mediated by decreased drug-target engagement. Journal of Clinical Investigation, 2020, 130, 3287-3298.	3.9	31
44	FOXA2 promotes prostate cancer growth in the bone. American Journal of Translational Research (discontinued), 2020, 12, 5619-5629.	0.0	1
45	Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene, 2019, 38, 7060-7072.	2.6	31
46	The androgen receptor regulates a druggable translational regulon in advanced prostate cancer. Science Translational Medicine, 2019, 11, .	5.8	47
47	Radium-223 mechanism of action: implications for use in treatment combinations. Nature Reviews Urology, 2019, 16, 745-756.	1.9	71
48	<i>COMMD3:BMI1</i> Fusion and COMMD3 Protein Regulate <i>C-MYC</i> Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer. Molecular Cancer Therapeutics, 2019, 18, 2111-2123.	1.9	22
49	Establishing a cryopreservation protocol for patientâ€derived xenografts of prostate cancer. Prostate, 2019, 79, 1326-1337.	1.2	12
50	Lineage relationship between prostate adenocarcinoma and small cell carcinoma. BMC Cancer, 2019, 19, 518.	1.1	5
51	A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene, 2019, 38, 4977-4989.	2.6	80
52	Contribution of Adrenal Glands to Intratumor Androgens and Growth of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 426-439.	3.2	46
53	Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage. Journal of Clinical Investigation, 2019, 129, 4245-4260.	3.9	67
54	Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. Journal of Clinical Investigation, 2019, 129, 4492-4505.	3.9	250

#	Article	IF	CITATIONS
55	Hypoxia-induced PIM kinase and laminin-activated integrin α6 mediate resistance to PI3K inhibitors in bone-metastatic CRPC. American Journal of Clinical and Experimental Urology, 2019, 7, 297-312.	0.4	7
56	Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4473-E4482.	3.3	96
57	A ribonucleoprotein octamer for targeted siRNA delivery. Nature Biomedical Engineering, 2018, 2, 326-337.	11.6	63
58	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	15.2	113
59	High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Scientific Reports, 2018, 8, 17239.	1.6	29
60	Downregulation of <i>Dipeptidyl Peptidase 4</i> Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Research, 2018, 78, 6354-6362.	0.4	42
61	Generation of Prostate Cancer Patient-Derived Xenografts to Investigate Mechanisms of Novel Treatments and Treatment Resistance. Methods in Molecular Biology, 2018, 1786, 1-27.	0.4	7
62	Antitumor Activity of MEDI3726 (ADCT-401), a Pyrrolobenzodiazepine Antibody–Drug Conjugate Targeting PSMA, in Preclinical Models of Prostate Cancer. Molecular Cancer Therapeutics, 2018, 17, 2176-2186.	1.9	33
63	Supraphysiological Testosterone Therapy as Treatment for Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2018, 8, 167.	1.3	11
64	Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis. Clinical Cancer Research, 2018, 24, 5458-5470.	3.2	43
65	A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clinical Cancer Research, 2018, 24, 4332-4345.	3.2	154
66	Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patientâ€derived xenograft (PDX) models. Prostate, 2018, 78, 1262-1282.	1.2	76
67	Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Molecular Cancer Research, 2017, 15, 521-531.	1.5	17
68	LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease anÂÂd Serve as Models for Evaluating Cancer Therapeutics. Prostate, 2017, 77, 654-671.	1.2	219
69	Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 2017, 19, 2045-2059.	2.9	99
70	Radium-223 Inhibits Osseous Prostate Cancer Growth by Dual Targeting of Cancer Cells and Bone Microenvironment in Mouse Models. Clinical Cancer Research, 2017, 23, 4335-4346.	3.2	138
71	Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant Prostate Cancer Patient-Derived Xenografts. Clinical Cancer Research, 2017, 23, 2301-2312.	3.2	20
72	Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 2017, 32, 474-489.e6.	7.7	483

#	Article	IF	CITATIONS
73	Identifying Dysregulated Epigenetic Enzyme Activity in Castrate-Resistant Prostate Cancer Development. ACS Chemical Biology, 2017, 12, 2804-2814.	1.6	22
74	Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment. International Journal of Cancer, 2017, 140, 358-369.	2.3	21
75	Supraphysiologic Testosterone Therapy in the Treatment of Prostate Cancer: Models, Mechanisms and Questions. Cancers, 2017, 9, 166.	1.7	33
76	Rapid Loss of RNA Detection by In Situ Hybridization in Stored Tissue Blocks and Preservation by Cold Storage of Unstained Slides. American Journal of Clinical Pathology, 2017, 148, 398-415.	0.4	52
77	Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget, 2017, 8, 77181-77194.	0.8	25
78	Inhibition of ERG Activity in Patient-derived Prostate Cancer Xenografts by YK-4-279. Anticancer Research, 2017, 37, 3385-3396.	0.5	19
79	Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Molecular Cancer Research, 2017, 15, 521-531.	1.5	3
80	Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer. Prostate, 2016, 76, 810-822.	1.2	45
81	Addition of PSMA ADC to enzalutamide therapy significantly improves survival in in vivo model of castration resistant prostate cancer. Prostate, 2016, 76, 325-334.	1.2	25
82	Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer. Clinical and Experimental Metastasis, 2016, 33, 325-337.	1.7	16
83	GRM1 is An Androgen-Regulated Gene and its Expression Correlates with Prostate Cancer Progression in Pre-Clinical Models. Clinical Cancer Research, 2016, , clincanres.0137.2016.	3.2	3
84	Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE, 2015, 10, e0130565.	1.1	48
85	CH5137291, an androgen receptor nuclear translocation-inhibiting compound, inhibits the growth of castration-resistant prostate cancer cells. International Journal of Oncology, 2015, 46, 1560-1572.	1.4	7
86	Rapid modification of the bone microenvironment following short-term treatment with Cabozantinib in vivo. Bone, 2015, 81, 581-592.	1.4	33
87	Efficacy studies of an antibodyâ€drug conjugate PSMAâ€ADC in patientâ€derived prostate cancer xenografts. Prostate, 2015, 75, 303-313.	1.2	31
88	SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2015, 21, 4698-4708.	3.2	137
89	Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nature Communications, 2014, 5, 4988.	5.8	219
90	AR-Regulated TWEAK-FN14 Pathway Promotes Prostate Cancer Bone Metastasis. Cancer Research, 2014, 74, 4306-4317.	0.4	37

#	Article	IF	CITATIONS
91	Prostate cancer derived prostatic acid phosphatase promotes an osteoblastic response in the bone microenvironment. Clinical and Experimental Metastasis, 2014, 31, 247-256.	1.7	21
92	The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis. Cancer Discovery, 2014, 4, 1310-1325.	7.7	389
93	Androgen Receptor Splice Variants Determine Taxane Sensitivity in Prostate Cancer. Cancer Research, 2014, 74, 2270-2282.	0.4	217
94	Prostate Cancer Characteristics Associated with Response to Pre-Receptor Targeting of the Androgen Axis. PLoS ONE, 2014, 9, e111545.	1.1	6
95	Effects of androgen deprivation therapy and bisphosphonate treatment on bone in patients with metastatic castration-resistant prostate cancer: Results from the University of Washington Rapid Autopsy Series. Journal of Bone and Mineral Research, 2013, 28, 333-340.	3.1	55
96	Prostate cancer cell phenotypes based on AGR2 and CD10 expression. Modern Pathology, 2013, 26, 849-859.	2.9	29
97	Inhibition of CCL2 Signaling in Combination with Docetaxel Treatment Has Profound Inhibitory Effects on Prostate Cancer Growth in Bone. International Journal of Molecular Sciences, 2013, 14, 10483-10496.	1.8	35
98	Role of WNT7B-induced Noncanonical Pathway in Advanced Prostate Cancer. Molecular Cancer Research, 2013, 11, 482-493.	1.5	59
99	Characterization of osteoblastic and osteolytic proteins in prostate cancer bone metastases. Prostate, 2013, 73, 932-940.	1.2	53
100	Cabozantinib Inhibits Growth of Androgen-Sensitive and Castration-Resistant Prostate Cancer and Affects Bone Remodeling. PLoS ONE, 2013, 8, e78881.	1.1	60
101	Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17087-17092.	3.3	233
102	Metastatic Progression of Prostate Cancer and E-Cadherin. American Journal of Pathology, 2011, 179, 400-410.	1.9	133
103	Estradiol suppresses tissue androgens and prostate cancer growth in castration resistant prostate cancer. BMC Cancer, 2010, 10, 244.	1.1	44
104	The expression of osteoclastogenesisâ€associated factors and osteoblast response to osteolytic prostate cancer cells. Prostate, 2010, 70, 412-424.	1.2	42
105	Low dose, alternating electric current inhibits growth of prostate cancer. Prostate, 2010, 70, 529-539.	1.2	6
106	Inhibition of angiopoietinâ $\in 2$ in LuCaP 23.1 prostate cancer tumors decreases tumor growth and viability. Prostate, 2010, 70, 1799-1808.	1.2	29
107	Bone Morphogenetic Protein 7 Is Expressed in Prostate Cancer Metastases and Its Effects on Prostate Tumor Cells Depend on Cell Phenotype and the Tumor Microenvironment. Neoplasia, 2010, 12, 192-205.	2.3	52
108	Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone. Clinical and Experimental Metastasis, 2009, 26, 161-169.	1.7	95

#	Article	IF	CITATIONS
109	Nemoâ€like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Prostate, 2009, 69, 1481-1492.	1.2	62
110	HE3235 Inhibits Growth of Castration-Resistant Prostate Cancer. Neoplasia, 2009, 11, 1216-IN23.	2.3	21
111	Targeted Therapy for Advanced Prostate Cancer: Inhibition of the PI3K/Akt/mTOR Pathway. Current Cancer Drug Targets, 2009, 9, 237-249.	0.8	244
112	Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases. Clinical and Experimental Metastasis, 2008, 25, 377-388.	1.7	91
113	RAD001 (Everolimus) inhibits growth of prostate cancer in the bone and the inhibitory effects are increased by combination with docetaxel and zoledronic acid. Prostate, 2008, 68, 861-871.	1.2	64
114	When prostate cancer meets bone: Control by wnts. Cancer Letters, 2007, 253, 170-179.	3.2	41
115	Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nature Medicine, 2007, 13, 1333-1340.	15.2	489
116	Targeting Factors Involved in Bone Remodeling as Treatment Strategies in Prostate Cancer Bone Metastasis. Clinical Cancer Research, 2006, 12, 6285s-6290s.	3.2	62
117	Inhibition of Androgen-Independent Prostate Cancer by Estrogenic Compounds Is Associated with Increased Expression of Immune-Related Genes. Neoplasia, 2006, 8, 862-878.	2.3	28
118	Basic Mechanisms Responsible for Osteolytic and Osteoblastic Bone Metastases: Fig. 1 Clinical Cancer Research, 2006, 12, 6213s-6216s.	3.2	444
119	Targeted chemotherapy with cytotoxic bombesin analogue AN-215 inhibits growth of experimental human prostate cancers. International Journal of Cancer, 2006, 118, 222-229.	2.3	26
120	Estrogen in Prostate Cancer - Friend or Foe?. Current Cancer Therapy Reviews, 2006, 2, 341-349.	0.2	0
121	Osteoprotegerin in Prostate Cancer Bone Metastasis. Cancer Research, 2005, 65, 1710-1718.	0.4	98
122	Metastases of prostate cancer express estrogen receptor-beta. Urology, 2004, 64, 814-820.	0.5	73
123	Characterization of C4-2 Prostate Cancer Bone Metastases and Their Response to Castration. Journal of Bone and Mineral Research, 2003, 18, 1882-1888.	3.1	40
124	Expression of the human cachexia-associated protein (HCAP) in prostate cancer and in a prostate cancer and in a prostate cancer animal model of cachexia. International Journal of Cancer, 2003, 105, 123-129.	2.3	40
125	LuCaP 35: A new model of prostate cancer progression to androgen independence. Prostate, 2003, 55, 239-246.	1.2	141
126	Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate, 2003, 56, 13-22.	1.2	99

#	Article	IF	CITATIONS
127	A novel method of generating prostate cancer metastases from orthotopic implants. Prostate, 2003, 56, 110-114.	1.2	27
128	Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clinical Cancer Research, 2003, 9, 295-306.	3.2	174
129	Establishment and characterization of osseous prostate cancer models: Intra-tibial injection of human prostate cancer cells. Prostate, 2002, 52, 20-33.	1.2	181
130	Inhibition of androgen-independent growth of prostate cancer xenografts by 17beta-estradiol. Clinical Cancer Research, 2002, 8, 1003-7.	3.2	40
131	Osteoprotegerin and rank ligand expression in prostate cancer. Urology, 2001, 57, 611-616.	0.5	222
132	Detection of disseminated prostate cells by reverse transcription-polymerase chain reaction (RT-PCR): Technical and clinical aspects. , 1998, 77, 655-673.		43
133	LNCaP produces both putative zymogen and inactive, free form of prostate-specific antigen. , 1998, 35, 135-143.		20
134	Study of free and complexed prostate-specific antigen in mice bearing human prostate cancer xenografts. , 1998, 36, 194-200.		5
135	THE VALUE OF A REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION ASSAY IN PREOPERATIVE STAGING AND FOLLOWUP OF PATIENTS WITH PROSTATE CANCER. Journal of Urology, 1998, 159, 1134-1138.	0.2	71
136	Detection of circulating prostate cells by reverse transcriptase-polymerase chain reaction of human glandular kallikrein (hK2) and prostate-specific antigen (PSA) Messages. Urology, 1997, 50, 184-188.	0.5	63
137	Cross-reactivity of ten anti-prostate-specific antigen monoclonal antibodies with human glandular kallikrein. Urology, 1997, 50, 567-572.	0.5	11
138	High-Affinity Peptide Ligands to Prostate-Specific Antigen Identified by Polysome Selection. Biochemical and Biophysical Research Communications, 1997, 232, 578-582.	1.0	59
139	Identification of differentially expressed prostate genes: Increased expression of transcription factor ETS-2 in prostate cancer. , 1997, 30, 145-153.		47
140	Characterization of 10 new monoclonal antibodies against prostate-specific antigen by analysis of affinity, specificity and function in sandwich assays. , 1997, 71, 1019-1028.		19
141	Prostatic cell lineage markers: Emergence of BCL2+ cells of human prostate cancer xenograft LuCaP 23 following castration. , 1996, 65, 85-89.		67