List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6818614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.	13.7	3,582
2	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	1.9	3,486
3	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
4	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	4.6	1,524
5	Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 2004, 303, 1659-1662.	6.0	947
6	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	1.9	908
7	Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 2008, 39, 827-849.	1.8	812
8	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	1.9	714
9	Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmospheric Chemistry and Physics, 2007, 7, 1503-1522.	1.9	702
10	The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, 8, 1965-1979.	1.2	662
11	Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter. Environmental Science & Technology, 2008, 42, 3316-3323.	4.6	629
12	Identification of the Mass Spectral Signature of Organic Aerosols from Wood Burning Emissions. Environmental Science & Technology, 2007, 41, 5770-5777.	4.6	459
13	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	1.9	449
14	SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmospheric Measurement Techniques, 2013, 6, 3649-3661.	1.2	433
15	Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6646-6651.	3.3	403
16	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmospheric Chemistry and Physics, 2013, 13, 961-981.	1.9	391
17	Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 2020, 587, 414-419.	13.7	352
18	Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environmental Science & Technology, 2017, 51, 1074-1093.	4.6	348

#	Article	IF	CITATIONS
19	A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 2008, 42, 101-112.	1.9	330
20	Relating hygroscopicity and composition of organic aerosol particulate matter. Atmospheric Chemistry and Physics, 2011, 11, 1155-1165.	1.9	326
21	New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmospheric Chemistry and Physics, 2011, 11, 6207-6227.	1.9	317
22	Urban air quality: The challenge of traffic non-exhaust emissions. Journal of Hazardous Materials, 2014, 275, 31-36.	6.5	314
23	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	1.9	308
24	Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time. Environmental Science & Technology, 2013, 47, 6316-6324.	4.6	304
25	New insights into PM _{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 3207-3225.	1.9	300
26	Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 2011, 45, 6777-6787.	1.9	294
27	Source Attribution of Submicron Organic Aerosols during Wintertime Inversions by Advanced Factor Analysis of Aerosol Mass Spectra. Environmental Science & Technology, 2008, 42, 214-220.	4.6	286
28	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
29	Evaluation of the absorption Ãngström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics, 2017, 17, 4229-4249.	1.9	272
30	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 2015, 6, 8435.	5.8	266
31	Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview. Atmospheric Chemistry and Physics, 2010, 10, 10453-10471.	1.9	261
32	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13503-13508.	3.3	251
33	A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmospheric Chemistry and Physics, 2006, 6, 5279-5293.	1.9	247
34	Secondary organic aerosols from anthropogenic and biogenic precursors. Faraday Discussions, 2005, 130, 265.	1.6	245
35	Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 2009, 43, 5138-5192.	1.9	243
36	PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmospheric Environment, 2010, 44, 2330-2340.	1.9	243

#	Article	IF	CITATIONS
37	Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. Journal of Geophysical Research, 2007, 112, .	3.3	220
38	Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2011, 11, 5945-5957.	1.9	215
39	Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics, 2013, 13, 9141-9158.	1.9	207
40	Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 8499-8527.	1.9	193
41	Secondary Organic Aerosol Formation by Irradiation of 1,3,5-Trimethylbenzeneâ^'NOxâ^'H2O in a New Reaction Chamber for Atmospheric Chemistry and Physics. Environmental Science & Technology, 2005, 39, 2668-2678.	4.6	191
42	Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophysical Research Letters, 2007, 34, .	1.5	191
43	Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	190
44	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophysical Research Letters, 2012, 39, .	1.5	189
45	Influence of meteorology on PM ₁₀ trends and variability in Switzerland from 1991 to 2008. Atmospheric Chemistry and Physics, 2011, 11, 1813-1835.	1.9	188
46	A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmospheric Environment, 2002, 36, 5569-5579.	1.9	187
47	The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Measurement Techniques, 2013, 6, 3225-3241.	1.2	184
48	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmospheric Chemistry and Physics, 2010, 10, 5315-5341.	1.9	182
49	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	1.5	182
50	Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments. Atmospheric Chemistry and Physics, 2010, 10, 11545-11563.	1.9	178
51	One decade of parallel fine (PM _{2.5}) and coarse (PM ₁₀ –PM _{2.5}) particulate matter measurements in Europe: trends and variability. Atmospheric Chemistry and Physics, 2012–12–3189-3203	1.9	177
52	Black carbon physical properties and mixing state in the European megacity Paris. Atmospheric Chemistry and Physics, 2013, 13, 5831-5856.	1.9	174
53	Quantification of topographic venting of boundary layer air to the free troposphere. Atmospheric Chemistry and Physics, 2004, 4, 497-509.	1.9	173
54	Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution fromÂcoal and biomass combustion. Atmospheric Chemistry and Physics, 2017, 17, 4751-4768.	1.9	172

#	Article	IF	CITATIONS
55	Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmospheric Chemistry and Physics, 2014, 14, 10061-10084.	1.9	171
56	Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics, 2005, 5, 1187-1203.	1.9	164
57	Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric Chemistry and Physics, 2015, 15, 1299-1312.	1.9	163
58	Associations of Primary and Secondary Organic Aerosols With Airway and Systemic Inflammation in an Elderly Panel Cohort. Epidemiology, 2010, 21, 892-902.	1.2	160
59	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	1.9	157
60	Laboratory observation of oligomers in the aerosol from isoprene/NOxphotooxidation. Geophysical Research Letters, 2006, 33, .	1.5	152
61	Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air. Atmospheric Chemistry and Physics, 2005, 5, 2881-2900.	1.9	148
62	Cloud forming potential of secondary organic aerosol under near atmospheric conditions. Geophysical Research Letters, 2008, 35, .	1.5	145
63	Organic aerosol mass spectral signatures from woodâ€burning emissions: Influence of burning conditions and wood type. Journal of Geophysical Research, 2008, 113, .	3.3	144
64	Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1950-1963.	1.2	142
65	Identification of significant precursor gases of secondary organic aerosols from residential wood combustion. Scientific Reports, 2016, 6, 27881.	1.6	141
66	Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.	1.9	139
67	Changes of hygroscopicity and morphology during ageing of diesel soot. Environmental Research Letters, 2011, 6, 034026.	2.2	138
68	Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 2014, 14, 4793-4807.	1.9	133
69	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 2017, 7, 4926.	1.6	133
70	Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008. Atmospheric Chemistry and Physics, 2010, 10, 4167-4186.	1.9	132
71	Labile Peroxides in Secondary Organic Aerosol. CheM, 2016, 1, 603-616.	5.8	132
72	Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Science of the Total Environment, 2012, 427-428, 175-190.	3.9	130

#	Article	IF	CITATIONS
73	Real-World Emission Factors for Antimony and Other Brake Wear Related Trace Elements: Size-Segregated Values for Light and Heavy Duty Vehicles. Environmental Science & Technology, 2009, 43, 8072-8078.	4.6	129
74	Strong influence of lowermost stratospheric ozone on lower tropospheric background ozone changes over Europe. Geophysical Research Letters, 2007, 34, .	1.5	128
75	Two-stroke scooters are a dominant source of air pollution in many cities. Nature Communications, 2014, 5, 3749.	5.8	126
76	Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environmental Science & Technology, 2018, 52, 10967-10974.	4.6	125
77	On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmospheric Chemistry and Physics, 2012, 12, 10841-10856.	1.9	122
78	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmospheric Chemistry and Physics, 2011, 11, 11477-11496.	1.9	119
79	Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 721-732.	1.9	118
80	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	1.2	118
81	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	1.9	118
82	Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics, 2015, 15, 1331-1349.	1.9	116
83	Effective Henry's Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing Sulfate. Environmental Science & Technology, 2013, 47, 4236-4244.	4.6	115
84	Quantification of the carbonaceous matter origin in submicron marine aerosol by ¹³ C and ¹⁴ C isotope analysis. Atmospheric Chemistry and Physics, 2011, 11, 8593-8606.	1.9	114
85	OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber. Atmospheric Measurement Techniques, 2012, 5, 647-656.	1.2	114
86	Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmospheric Chemistry and Physics, 2016, 16, 1895-1906.	1.9	112
87	Trace Metals in Soot and PM _{2.5} from Heavy-Fuel-Oil Combustion in a Marine Engine. Environmental Science & Technology, 2018, 52, 6714-6722.	4.6	112
88	Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions. PLoS ONE, 2015, 10, e0126536.	1.1	111
89	Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition. Atmospheric Measurement Techniques, 2015, 8, 2315-2332.	1.2	110
90	Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 23-39.	1.2	110

#	Article	IF	CITATIONS
91	Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 8469-8489.	1.9	110
92	OH measurements during the First Aerosol Characterization Experiment (ACE 1): Observations and model comparisons. Journal of Geophysical Research, 1998, 103, 16713-16729.	3.3	109
93	Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology. Atmospheric Chemistry and Physics, 2016, 16, 12667-12701.	1.9	109
94	Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2013, 13, 9479-9496.	1.9	108
95	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	1.9	108
96	Seasonal differences in oxygenated organic aerosol composition: implications for emissions sources and factor analysis. Atmospheric Chemistry and Physics, 2015, 15, 6993-7002.	1.9	106
97	Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model. Atmospheric Chemistry and Physics, 2013, 13, 5767-5790.	1.9	105
98	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	1.7	105
99	Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics, 2011, 11, 2917-2931.	1.9	104
100	ACTRIS ACSM intercomparison $\hat{a} \in$ Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	1.2	104
101	Fine and coarse PM composition and sources in rural and urban sites in Switzerland: Local or regional pollution?. Science of the Total Environment, 2012, 427-428, 191-202.	3.9	103
102	Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution. Atmospheric Chemistry and Physics, 2013, 13, 933-959.	1.9	101
103	Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy. Journal of Geophysical Research, 2002, 107, LOP 6-1.	3.3	99
104	Real-Time Measurement of Oligomeric Species in Secondary Organic Aerosol with the Aerosol Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2006, 78, 2130-2137.	3.2	99
105	Photolysis frequency measurement techniques: results of a comparison within the ACCENT project. Atmospheric Chemistry and Physics, 2008, 8, 5373-5391.	1.9	99
106	Characterization of primary and secondary wood combustion products generated under different burner loads. Atmospheric Chemistry and Physics, 2015, 15, 2825-2841.	1.9	99
107	Contribution of the Middle Eastern dust source areas to PM10 levels in urban receptors: Case study of Tehran, Iran. Atmospheric Environment, 2013, 75, 287-295.	1.9	98
108	Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 10439-10464.	1.9	97

#	Article	IF	CITATIONS
109	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions. Environmental Science & Technology, 2016, 50, 1243-1250.	4.6	97
110	Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements. International Journal of Mass Spectrometry, 2004, 239, 117-128.	0.7	96
111	Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. Atmospheric Chemistry and Physics, 2013, 13, 8411-8426.	1.9	96
112	Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region. Atmospheric Environment, 2014, 89, 64-75.	1.9	94
113	Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): Seasonal variation and source allocation. Atmospheric Environment, 2007, 41, 8409-8423.	1.9	93
114	Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types. Atmospheric Chemistry and Physics, 2011, 11, 5931-5944.	1.9	92
115	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	1.9	92
116	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. Atmospheric Measurement Techniques, 2019, 12, 4867-4886.	1.2	91
117	Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmospheric Chemistry and Physics, 2011, 11, 8945-8963.	1.9	90
118	Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmospheric Environment, 2017, 153, 70-82.	1.9	90
119	Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmospheric Chemistry and Physics, 2011, 11, 9415-9430.	1.9	89
120	A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmospheric Chemistry and Physics, 2013, 13, 1689-1712.	1.9	89
121	Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability. Atmospheric Chemistry and Physics, 2014, 14, 13551-13570.	1.9	89
122	Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation. Atmospheric Chemistry and Physics, 2009, 9, 635-665.	1.9	88
123	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.	4.6	88
124	Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site on Hainan Island, South China. Environmental Science & Technology, 2014, 48, 2651-2659.	4.6	87
125	Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements. Environmental Science & Technology, 2015, 49, 8408-8415.	4.6	83
126	Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.	1.9	83

#	Article	IF	CITATIONS
127	Wintertime secondary organic aerosol formation in Beijing–Tianjin–Hebei (BTH): contributions of HONO sources and heterogeneous reactions. Atmospheric Chemistry and Physics, 2019, 19, 2343-2359.	1.9	83
128	Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.	1.2	82
129	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	1.9	82
130	Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008). Atmospheric Chemistry and Physics, 2010, 10, 12149-12160.	1.9	81
131	Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?. Atmospheric Chemistry and Physics, 2010, 10, 10997-11016.	1.9	80
132	Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees,) Tj ETQq0 (0 0 rgBT /0 1.9	Overlock 10 T
133	Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer. Atmospheric Measurement Techniques, 2013, 6, 3271-3280.	1.2	79
134	Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged residential wood combustion emissions. Atmospheric Chemistry and Physics, 2017, 17, 705-720.	1.9	79
135	Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmospheric Measurement Techniques, 2017, 10, 2061-2076.	1.2	79
136	Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France. Atmospheric Chemistry and Physics, 2011, 11, 13047-13059.	1.9	78
137	Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART. Geoscientific Model Development, 2011, 4, 1077-1102.	1.3	78
138	Hygroscopic properties of fresh and aged wood burning particles. Journal of Aerosol Science, 2013, 56, 15-29.	1.8	78
139	Long-term chemical analysis and organic aerosol source apportionment at nine sites in central Europe: source identification and uncertainty assessment. Atmospheric Chemistry and Physics, 2017, 17, 13265-13282.	1.9	78
140	Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment, 2020, 742, 140332.	3.9	78
141	Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmospheric Chemistry and Physics, 2018, 18, 17843-17861.	1.9	77
142	The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5638-5657.	1.2	76
143	Sources and contributions of wood smoke during winter in London: assessing local and regional influences. Atmospheric Chemistry and Physics, 2015, 15, 3149-3171.	1.9	76
144	Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 2015, 155, 204-217.	5.1	76

#	Article	IF	CITATIONS
145	Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmospheric Chemistry and Physics, 2016, 16, 13251-13269.	1.9	76
146	Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects. Atmospheric Measurement Techniques, 2009, 2, 33-46.	1.2	75
147	Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmospheric Chemistry and Physics, 2017, 17, 8247-8268.	1.9	75
148	Groundwater and surface water quality characterization through positive matrix factorization combined with GIS approach. Water Research, 2019, 159, 122-134.	5.3	74
149	Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmospheric Chemistry and Physics, 2019, 19, 2283-2298.	1.9	74
150	Aerosol modelling in Europe with a focus on Switzerland during summer and winter episodes. Atmospheric Chemistry and Physics, 2011, 11, 7355-7373.	1.9	73
151	Aerosol and trace gas vehicle emission factors measured in a tunnel using anÂAerosol Mass Spectrometer and other on-line instrumentation. Atmospheric Environment, 2011, 45, 2182-2192.	1.9	73
152	Fine and ultrafine particles in the Zürich (Switzerland) area measured with a mobile laboratory: an assessment of the seasonal and regional variation throughout a year. Atmospheric Chemistry and Physics, 2003, 3, 1477-1494.	1.9	71
153	Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmospheric Chemistry and Physics, 2015, 15, 11291-11309.	1.9	71
154	Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Scientific Reports, 2015, 5, 11801.	1.6	71
155	Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	71
156	Effects of various meteorological conditions and spatial emissionresolutions on the ozone concentration and ROG/NO _x limitationin the Milan area (I). Atmospheric Chemistry and Physics, 2004, 4, 423-438.	1.9	70
157	Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	70
158	The Milan photooxidant plume. Journal of Geophysical Research, 1997, 102, 23375-23388.	3.3	69
159	Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor. Atmospheric Chemistry and Physics, 2015, 15, 6379-6391.	1.9	69
160	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	1.9	68
161	Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016, 3, 121-126.	3.9	67
162	Evolution of the chemical fingerprint of biomass burning organic aerosol during aging. Atmospheric Chemistry and Physics, 2018, 18, 7607-7624.	1.9	67

#	Article	IF	CITATIONS
163	Photochemical oxidant formation over southern Switzerland: 1. Results from summer 1994. Journal of Geophysical Research, 1997, 102, 23345-23362.	3.3	66
164	Physical factors influencing winter precipitation chemistry. Environmental Science & Technology, 1991, 25, 782-788.	4.6	65
165	Climatology of Mountain Venting–Induced Elevated Moisture Layers in the Lee of the Alps. Journal of Applied Meteorology and Climatology, 2005, 44, 620-633.	1.7	65
166	Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m) Tj ETQq(00 _{3.3} gBT	/Overlock 10
167	Evaluation of the particle measurement programme (PMP) protocol to remove the vehicles' exhaust aerosol volatile phase. Science of the Total Environment, 2010, 408, 5106-5116.	3.9	65
168	Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmospheric Environment, 2017, 169, 36-53.	1.9	65
169	Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids. Atmospheric Environment, 2008, 42, 8278-8287.	1.9	63
170	Oxidative Potential of Logwood and Pellet Burning Particles Assessed by a Novel Profluorescent Nitroxide Probe. Environmental Science & Technology, 2010, 44, 6601-6607.	4.6	63
171	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. Atmospheric Environment, 2015, 123, 240-250.	1.9	63
172	On the fate of oxygenated organic molecules in atmospheric aerosol particles. Science Advances, 2020, 6, eaax8922.	4.7	63
173	Comparison of 7 years of satellite-borne and ground-based tropospheric NO2measurements around Milan, Italy. Journal of Geophysical Research, 2006, 111, .	3.3	62
174	Size-Segregated Inorganic and Organic Components of PM in the Communities of the Los Angeles Harbor. Aerosol Science and Technology, 2009, 43, 145-160.	1.5	62
175	Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment. Atmospheric Chemistry and Physics, 2014, 14, 1397-1412.	1.9	62
176	Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6175-6195.	1.2	62
177	Mobile measurements of aerosol number and volume size distributions in an Alpine valley: Influence of traffic versus wood burning. Atmospheric Environment, 2009, 43, 624-630.	1.9	61
178	The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview. Atmospheric Chemistry and Physics, 2010, 10, 6793-6806.	1.9	61
179	New insights on OH: Measurements around and in clouds. Geophysical Research Letters, 1997, 24, 3033-3036.	1.5	60
180	Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China. Atmospheric Environment, 2017, 158, 128-137.	1.9	60

#	Article	IF	CITATIONS
181	The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmospheric Measurement Techniques, 2017, 10, 1043-1059.	1.2	60
182	Contributions of residential coal combustion to the air quality in Beijing–Tianjin–Hebei (BTH), China: a case study. Atmospheric Chemistry and Physics, 2018, 18, 10675-10691.	1.9	60
183	Source Apportionment of Brown Carbon Absorption by Coupling Ultraviolet–Visible Spectroscopy with Aerosol Mass Spectrometry. Environmental Science and Technology Letters, 2018, 5, 302-308.	3.9	60
184	Chemical characterization of PM2.5 and source apportionment of organic aerosol in New Delhi, India. Science of the Total Environment, 2020, 745, 140924.	3.9	60
185	Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach. Atmospheric Measurement Techniques, 2014, 7, 2373-2387.	1.2	59
186	Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle. Atmospheric Environment, 2015, 117, 200-211.	1.9	59
187	Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe. Atmospheric Chemistry and Physics, 2017, 17, 117-141.	1.9	59
188	Spatial variation of chemical composition and sources of submicron aerosol in Zurich during wintertime using mobile aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2011, 11, 7465-7482.	1.9	58
189	Lessons learnt from the first EMEP intensive measurement periods. Atmospheric Chemistry and Physics, 2012, 12, 8073-8094.	1.9	58
190	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Technology, 2017, 51, 7842-7852.	4.6	58
191	Field characterization of the PM _{2.5} Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fineÂparticles in eastern China. Atmospheric Chemistry and Physics, 2017, 17, 14501-14517.	1.9	58
192	Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments. Atmospheric Chemistry and Physics, 2017, 17, 7653-7669.	1.9	58
193	Sensitivity of photooxidant production in the Milan Basin: An overview of results from a EUROTRAC-2 Limitation of Oxidant Production field experiment. Journal of Geophysical Research, 2002, 107, LOP 1-1.	3.3	57
194	Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data. Atmospheric Chemistry and Physics, 2008, 8, 6453-6468.	1.9	57
195	Time-Resolved Characterization of Primary Emissions from Residential Wood Combustion Appliances. Environmental Science & Technology, 2012, 46, 11418-11425.	4.6	57
196	Organic compounds in aerosols from selected European sites – Biogenic versus anthropogenic sources. Atmospheric Environment, 2012, 59, 243-255.	1.9	57
197	Size-Resolved Identification, Characterization, and Quantification of Primary Biological Organic Aerosol at a European Rural Site. Environmental Science & Technology, 2016, 50, 3425-3434.	4.6	57
198	Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor. Atmospheric Chemistry and Physics, 2018, 18, 9929-9954.	1.9	57

#	Article	IF	CITATIONS
199	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) – PartÂ2: Biomass burning influences in winter. Atmospheric Chemistry and Physics, 2019, 19, 8037-8062.	1.9	57
200	Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. Environmental Science & amp; Technology, 2021, 55, 4332-4343.	4.6	57
201	Roadside measurements of particulate matter size distribution. Atmospheric Environment, 2003, 37, 5273-5281.	1.9	56
202	Impacts of meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during wintertime: a case study. Atmospheric Chemistry and Physics, 2017, 17, 14579-14591.	1.9	56
203	Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany. Atmospheric Chemistry and Physics, 2014, 14, 10145-10162.	1.9	55
204	Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) – chemical composition, origins and organic aerosol sources. Atmospheric Chemistry and Physics, 2015, 15, 11373-11398.	1.9	55
205	Observation of viscosity transition in <i>α</i> -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	1.9	55
206	Diurnal variations of volatile organic compounds and local circulation systems in an Alpine valley. Atmospheric Environment, 2000, 34, 1413-1423.	1.9	54
207	Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period. Atmospheric Chemistry and Physics, 2018, 18, 6187-6206.	1.9	54
208	Physico-chemical modeling of the First Aerosol Characterization Experiment (ACE 1) Lagrangian B: 1. A moving column approach. Journal of Geophysical Research, 1998, 103, 16433-16455.	3.3	53
209	Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. Atmospheric Chemistry and Physics, 2012, 12, 6113-6128.	1.9	52
210	Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmospheric Environment, 2016, 141, 333-346.	1.9	52
211	Seasonal trends in the composition and sources of PM2.5 and carbonaceous aerosol in Tehran, Iran. Environmental Pollution, 2018, 239, 69-81.	3.7	52
212	Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (¹ H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy). Atmospheric Chemistry and Physics, 2014, 14, 5089-5110.	1.9	51
213	Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Scientific Reports, 2016, 6, 36623.	1.6	51
214	Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China. Atmospheric Chemistry and Physics, 2017, 17, 10245-10258.	1.9	51
215	The VOTALP Mesolcina Valley Campaign 1996 – concept, background and some highlights. Atmospheric Environment, 2000, 34, 1395-1412.	1.9	50
216	Influence of mountain venting in the Alps on the ozone chemistry of the lower free troposphere and the European pollution export. Journal of Geophysical Research, 2005, 110, .	3.3	50

#	Article	IF	CITATIONS
217	Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles. Atmospheric Chemistry and Physics, 2013, 13, 761-772.	1.9	50
218	Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison. Atmospheric Environment, 2016, 132, 58-68.	1.9	50
219	A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data. Atmospheric Measurement Techniques, 2021, 14, 923-943.	1.2	50
220	Atmospheric chemistry in stereo: A new look at secondary organic aerosols from isoprene. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	49
221	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	1.2	49
222	Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China. Atmospheric Chemistry and Physics, 2018, 18, 4005-4017.	1.9	49
223	Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmospheric Chemistry and Physics, 2019, 19, 14755-14776.	1.9	49
224	The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study. Atmospheric Chemistry and Physics, 2013, 13, 6493-6506.	1.9	48
225	Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmospheric Environment, 2017, 169, 65-79.	1.9	48
226	Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmospheric Environment, 2012, 61, 482-489.	1.9	47
227	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	1.9	47
228	Evaluation of European air quality modelled by CAMx including the volatility basis set scheme. Atmospheric Chemistry and Physics, 2016, 16, 10313-10332.	1.9	47
229	Kerb and urban increment of highly time-resolved trace elements in PM ₁₀ , PM _{2.5} and PM _{1.0} winter aerosol in London during ClearfLo 2012. Atmospheric Chemistry and Physics 2015 12 2367-2386	1.9	46
230	Exploration of PM _{2.5} sources on the regional scale in the Pearl River Delta based on ME-2 modeling. Atmospheric Chemistry and Physics, 2018, 18, 11563-11580.	1.9	46
231	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. Atmospheric Chemistry and Physics, 2020, 20, 1233-1254.	1.9	45
232	Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2011, 11, 12499-12515.	1.9	44
233	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
234	Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2.5 aerosol over five sites of Indo-Gangetic Plain. Atmospheric Pollution Research, 2021, 12, 375-390.	1.8	44

#	Article	IF	CITATIONS
235	Aerosol and NO _x emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes. Atmospheric Chemistry and Physics, 2006, 6, 2215-2230.	1.9	43
236	The weekly cycle of ambient concentrations and traffic emissions of coarse (PM10–PM2.5) atmospheric particles. Atmospheric Environment, 2011, 45, 4580-4590.	1.9	43
237	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. Atmospheric Environment, 2011, 45, 5282-5293.	1.9	42
238	High contributions of vehicular emissions to ammonia in three European cities derived from mobile measurements. Atmospheric Environment, 2018, 175, 210-220.	1.9	42
239	Real-Time Measurements of PM _{2.5} Oxidative Potential Using a Dithiothreitol Assay in Delhi, India. Environmental Science and Technology Letters, 2020, 7, 504-510.	3.9	42
240	Chemical characterization of secondary organic aerosol at a rural site in the southeastern US: insights from simultaneous high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and FIGAERO chemical ionization mass spectrometer (CIMS) measurements. Atmospheric Chemistry and Physics, 2020, 20, 8421-8440.	1.9	42
241	Source characterization of volatile organic compounds measured by proton-transfer-reaction time-of-flight mass spectrometers in Delhi, India. Atmospheric Chemistry and Physics, 2020, 20, 9753-9770.	1.9	42
242	Sensitivity of ozone production derived from field measurements in the Italian Po basin. Journal of Geophysical Research, 2002, 107, LOP 7-1.	3.3	41
243	European aerosol phenomenology â^' 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	4.8	41
244	Responses of lung cells to realistic exposure of primary and aged carbonaceous aerosols. Atmospheric Environment, 2013, 68, 143-150.	1.9	40
245	Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 5973-5991.	1.9	40
246	Influence of road traffic on volatile organic compound concentrations in and above a deep Alpine valley. Atmospheric Environment, 2000, 34, 4719-4726.	1.9	39
247	Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: A chemometric approach. Analytica Chimica Acta, 2012, 717, 28-38.	2.6	39
248	Limited formation of isoprene epoxydiolsâ€derived secondary organic aerosol under NO _x â€rich environments in Eastern China. Geophysical Research Letters, 2017, 44, 2035-2043.	1.5	39
249	Novel insights on new particle formation derived from a pan-european observing system. Scientific Reports, 2018, 8, 1482.	1.6	39
250	Using Proton Transfer Reaction Mass Spectrometry for Online Analysis of Secondary Organic Aerosols. Environmental Science & Technology, 2008, 42, 7347-7353.	4.6	38
251	Variations in the chemical composition of the submicron aerosol and in the sources of the organic fraction at a regional background site of the Po Valley (Italy). Atmospheric Chemistry and Physics, 2016, 16, 12875-12896.	1.9	38
252	Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 2016, 16, 8831-8847.	1.9	38

#	Article	IF	CITATIONS
253	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometerÂ(EESI-TOF-MS) – PartÂ1: Biogenic influences and day–night chemistry in summer. Atmospheric Chemistry and Physics, 2019, 19, 14825-14848.	1.9	38
254	Characteristics and sources of hourly elements in PM10 and PM2.5 during wintertime in Beijing. Environmental Pollution, 2021, 278, 116865.	3.7	38
255	Assessing the influence of NO _{<i>x</i>} concentrations and relative humidity on secondary organic aerosol yields from <i>î±</i> -pinene photo-oxidation through smog chamber experiments and modelling calculations. Atmospheric	1.9	37
256	Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Atmospheric Chemistry and Physics, 2020, 20, 1657-1674.	1.9	37
257	Modeling of formation and distribution of secondary aerosols in the Milan area (Italy). Journal of Geophysical Research, 2004, 109, .	3.3	36
258	Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration. Atmospheric Measurement Techniques, 2010, 3, 1473-1485.	1.2	36
259	Fossil and Non-Fossil Sources of Different Carbonaceous Fractions in Fine and Coarse Particles by Radiocarbon Measurement. Radiocarbon, 2013, 55, 1510-1520.	0.8	36
260	Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches. Atmospheric Measurement Techniques, 2014, 7, 2027-2035.	1.2	36
261	Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production. Atmospheric Chemistry and Physics, 2015, 15, 1289-1298.	1.9	36
262	Organic aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis. Atmospheric Chemistry and Physics, 2016, 16, 15545-15559.	1.9	36
263	Volatility of organic aerosol and its components in the megacity of Paris. Atmospheric Chemistry and Physics, 2016, 16, 2013-2023.	1.9	36
264	Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA. Atmospheric Chemistry and Physics, 2017, 17, 9237-9259.	1.9	36
265	Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmospheric Chemistry and Physics, 2019, 19, 3747-3768.	1.9	36
266	Model study with UAM-V in the Milan area (I) during PIPAPO: simulations with changed emissions compared to ground and airborne measurements. Atmospheric Environment, 2003, 37, 4133-4147.	1.9	35
267	Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe. Atmospheric Chemistry and Physics, 2016, 16, 5513-5529.	1.9	35
268	Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China. Environmental Research Letters, 2017, 12, 044012.	2.2	35
269	The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations. Aerosol Science and Technology, 2019, 53, 830-842.	1.5	35
270	Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. Atmospheric Chemistry and Physics, 2019, 19, 15247-15270.	1.9	35

#	Article	IF	CITATIONS
271	Effect of Stove Technology and Combustion Conditions on Gas and Particulate Emissions from Residential Biomass Combustion. Environmental Science & Technology, 2019, 53, 2209-2219.	4.6	35
272	Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity area during late winter. Science of the Total Environment, 2021, 770, 145324.	3.9	35
273	Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns. Atmospheric Chemistry and Physics, 2016, 16, 3727-3741.	1.9	34
274	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	1.9	33
275	A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2012, 12, 2189-2203.	1.9	32
276	Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. Atmospheric Chemistry and Physics, 2016, 16, 1139-1160.	1.9	32
277	Characterization of the photooxidant formation in the metropolitan area of Milan from aircraft measurements. Journal of Geophysical Research, 2002, 107, LOP 10-1.	3.3	31
278	Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 271-291.	1.4	31
279	Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements. Atmospheric Chemistry and Physics, 2016, 16, 7117-7134.	1.9	31
280	Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environmental Science & Technology, 2017, 51, 10624-10632.	4.6	31
281	Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions. Atmospheric Chemistry and Physics, 2018, 18, 6985-7000.	1.9	31
282	Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14703-14720.	1.9	31
283	Brown Carbon in Primary and Aged Coal Combustion Emission. Environmental Science & Technology, 2021, 55, 5701-5710.	4.6	31
284	Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nature Geoscience, 2022, 15, 196-202.	5.4	31
285	Photochemical modeling of OH levels during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1999, 104, 16041-16052.	3.3	30
286	Climatology of ozone transport from the free troposphere into the boundary layer south of the Alps during North Foehn. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	30
287	Hourly composition of gas and particle phase pollutants at a central urban background site in Milan, Italy. Atmospheric Research, 2017, 186, 83-94.	1.8	30
288	Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry. Environmental Pollution, 2017, 222, 567-582.	3.7	30

#	Article	IF	CITATIONS
289	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Residential Coal Combustion. Environmental Science & Technology, 2018, 52, 2612-2617.	4.6	30
290	Unusual winter Saharan dust intrusions at Northwest Spain: Air quality, radiative and health impacts. Science of the Total Environment, 2019, 669, 213-228.	3.9	30
291	Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 2020, 705, 135330.	3.9	30
292	Sources of PM2.5 at an urban-industrial Mediterranean city, Marseille (France): Application of the ME-2 solver to inorganic and organic markers. Atmospheric Research, 2018, 214, 263-274.	1.8	29
293	A Review of Aerosol Chemical Composition and Sources in Representative Regions of China during Wintertime. Atmosphere, 2019, 10, 277.	1.0	29
294	Distinguishing fuel and lubricating oil combustion products in diesel engine exhaust particles. Aerosol Science and Technology, 2019, 53, 594-607.	1.5	29
295	Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach. Atmospheric Chemistry and Physics, 2020, 20, 9051-9066.	1.9	29
296	Chemical and Source Characterization of Submicron Particles at Residential and Traffic Sites in the Helsinki Metropolitan Area, Finland. Aerosol and Air Quality Research, 2015, 15, 1213-1226.	0.9	29
297	Scintillometer Wind Measurements over Complex Terrain. Journal of Atmospheric and Oceanic Technology, 2000, 17, 17-26.	0.5	28
298	High-resolution emission inventory of the Lombardy region: development and comparison with measurements. Atmospheric Environment, 2003, 37, 4149-4161.	1.9	28
299	In situ formation and spatial variability of particle number concentration in a European megacity. Atmospheric Chemistry and Physics, 2015, 15, 10219-10237.	1.9	28
300	Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40). Geoscientific Model Development, 2017, 10, 2303-2320.	1.3	28
301	Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2). Atmospheric Measurement Techniques, 2018, 11, 1049-1060.	1.2	28
302	Quantification of the impact of cooking processes on indoor concentrations of volatile organic species and primary and secondary organic aerosols. Indoor Air, 2019, 29, 926-942.	2.0	28
303	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	1.2	28
304	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	1.9	27
305	Micro-scale (μg) radiocarbon analysis of water-soluble organic carbon in aerosol samples. Atmospheric Environment, 2014, 97, 1-5.	1.9	27
306	Low modeled ozone production suggests underestimation of precursor emissions (especially) Tj ETQq0 0 0 rgBT	Overlock 1.9	10 Tf 50 67 ⁻ 27

Chemistry and Physics, 2018, 18, 2175-2198.

#	Article	IF	CITATIONS
307	Characterization and source apportionment of organic aerosol at 260 m on aÂmeteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 3951-3968.	1.9	27
308	Simulation of fine organic aerosols in the western Mediterranean area during the ChArMEx 2013 summer campaign. Atmospheric Chemistry and Physics, 2018, 18, 7287-7312.	1.9	27
309	Volatile Organic Compounds in the Po Basin. Part B: Biogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 293-315.	1.4	26
310	The impact of reducing the maximum speed limit on motorways in Switzerland to 80km hâ^'1 on emissions and peak ozone. Environmental Modelling and Software, 2008, 23, 322-332.	1.9	26
311	Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 using the aerosol chemical speciation monitor (ACSM). Atmospheric Environment, 2017, 167, 389-402.	1.9	26
312	Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate. Atmospheric Chemistry and Physics, 2017, 17, 7757-7773.	1.9	26
313	Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results. Atmospheric Chemistry and Physics, 2020, 20, 8551-8592.	1.9	26
314	Development, characterization and first deployment of an improved online reactive oxygen species analyzer. Atmospheric Measurement Techniques, 2018, 11, 65-80.	1.2	25
315	Online Aerosol Chemical Characterization by Extractive Electrospray Ionization–Ultrahigh-Resolution Mass Spectrometry (EESI-Orbitrap). Environmental Science & Technology, 2020, 54, 3871-3880.	4.6	25
316	Realâ€Time Characterization of Aerosol Compositions, Sources, and Aging Processes in Guangzhou During PRIDEâ€GBA 2018 Campaign. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035114.	1.2	25
317	The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols. Atmospheric Measurement Techniques, 2020, 13, 4333-4351.	1.2	25
318	Vertical transport and degradation of polycyclic aromatic hydrocarbons in an Alpine Valley. Atmospheric Environment, 2004, 38, 6447-6456.	1.9	24
319	Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter. Atmospheric Environment, 2014, 94, 307-315.	1.9	24
320	A model study on changes of European and Swiss particulate matter, ozone and nitrogen deposition between 1990 and 2020 due to the revised Gothenburg protocol. Atmospheric Chemistry and Physics, 2014, 14, 13081-13095.	1.9	24
321	Spatial Variation of Aerosol Chemical Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region. Environmental Science & Technology, 2015, 49, 10421-10430.	4.6	24
322	Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set. Atmospheric Chemistry and Physics, 2019, 19, 11461-11484.	1.9	24
323	Chemical analysis of atmospheric aerosols. Analytical and Bioanalytical Chemistry, 2008, 390, 277-280.	1.9	23
324	Intercomparison of ¹⁴ C Analysis of Carbonaceous Aerosols: Exercise 2009. Radiocarbon, 2013, 55, 1496-1509.	0.8	23

#	Article	IF	CITATIONS
325	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	1.9	23
326	Quantification of source specific black carbon scavenging using an aethalometer and a disdrometer. Environmental Pollution, 2019, 246, 336-345.	3.7	23
327	Secondary aerosols in Switzerland and northern Italy: Modeling and sensitivity studies for summer 2003. Journal of Geophysical Research, 2008, 113, .	3.3	22
328	Surface ozone at the Caucasian site Kislovodsk High Mountain Station and the Swiss Alpine site Jungfraujoch: data analysis and trends (1990–2006). Atmospheric Chemistry and Physics, 2009, 9, 4157-4175.	1.9	22
329	Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations. Journal of Physical Chemistry A, 2016, 120, 3397-3405.	1.1	22
330	Time-dependent source apportionment of submicron organic aerosol for a rural site in an alpine valley using a rolling positive matrix factorisation (PMF) window. Atmospheric Chemistry and Physics, 2021, 21, 15081-15101.	1.9	22
331	The influence of south Foehn on the ozone distribution in the Alpine Rhine valley—results from the MAP field phase. Atmospheric Environment, 2001, 35, 6379-6390.	1.9	21
332	A photochemical modeling study of ozone and formaldehyde generation and budget in the Po basin. Journal of Geophysical Research, 2007, 112, .	3.3	21
333	Application of Modern Online Instrumentation for Chemical Analysis of Gas and Particulate Phases of Exhaust at the European Commission Heavy-Duty Vehicle Emission Laboratory. Analytical Chemistry, 2011, 83, 67-76.	3.2	21
334	Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area. Atmospheric Measurement Techniques, 2014, 7, 279-299.	1.2	21
335	Critical Role of Simultaneous Reduction of Atmospheric Odd Oxygen for Winter Haze Mitigation. Environmental Science & Technology, 2021, 55, 11557-11567.	4.6	21
336	Characterization of non-refractory (NR) PM ₁ and source apportionment of organic aerosol in Kraków, Poland. Atmospheric Chemistry and Physics, 2021, 21, 14893-14906.	1.9	21
337	Photochemical modelling in the Po basin with focus on formaldehyde and ozone. Atmospheric Chemistry and Physics, 2007, 7, 121-137.	1.9	20
338	The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics, 2019, 19, 4211-4233.	1.9	20
339	Real-Time Detection of Aerosol Metals Using Online Extractive Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2020, 92, 1316-1325.	3.2	20
340	Changes in ozone and PM2.5 in Europe during the period of 1990–2030: Role of reductions in land and ship emissions. Science of the Total Environment, 2020, 741, 140467.	3.9	20
341	Sources and characteristics of light-absorbing fine particulates over Delhi through the synergy of real-time optical and chemical measurements. Atmospheric Environment, 2021, 252, 118338.	1.9	20
342	Quantification of solid fuel combustion and aqueous chemistry contributions to secondary organic aerosol during wintertime haze events in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 9859-9886.	1.9	20

#	Article	IF	CITATIONS
343	Diurnal variability in the spectral characteristics and sources of water-soluble brown carbon aerosols over Delhi. Science of the Total Environment, 2021, 794, 148589.	3.9	20
344	A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmospheric Chemistry and Physics, 2020, 20, 7875-7893.	1.9	20
345	Characteristics of the marine boundary layers during two Lagrangian measurement periods: 2. Turbulence structure. Journal of Geophysical Research, 1999, 104, 21767-21784.	3.3	19
346	Sensitivity of ozone and aerosols to precursor emissions in Europe. International Journal of Environment and Pollution, 2012, 50, 451.	0.2	19
347	Aerosol chemistry and particle growth events at an urban downwind site in North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 14637-14651.	1.9	19
348	Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers. Atmospheric Chemistry and Physics, 2018, 18, 10915-10930.	1.9	19
349	Development of a versatile source apportionment analysis based on positive matrix factorization: a case study of the seasonal variation of organic aerosol sources in Estonia. Atmospheric Chemistry and Physics, 2019, 19, 7279-7295.	1.9	19
350	Comparison of five methodologies to apportion organic aerosol sources during a PM pollution event. Science of the Total Environment, 2021, 757, 143168.	3.9	19
351	Highly time-resolved measurements of element concentrations in PM ₁₀ and PM _{2.5} : comparison of Delhi, Beijing, London, and Krakow. Atmospheric Chemistry and Physics, 2021, 21, 717-730.	1.9	19
352	Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS ONE, 2020, 15, e0233425.	1.1	19
353	Photochemical production and aging of an urban air mass. Journal of Geophysical Research, 1999, 104, 5493-5506.	3.3	18
354	The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide. Atmospheric Chemistry and Physics, 2009, 9, 3147-3161.	1.9	18
355	Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler. Atmospheric Environment, 2017, 158, 236-245.	1.9	18
356	Characteristics of VOC Composition at Urban and Suburban Sites of New Delhi, India in Winter. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	18
357	Aging induced changes on NEXAFS fingerprints in individual combustion particles. Atmospheric Chemistry and Physics, 2011, 11, 11777-11791.	1.9	17
358	Non-linear photochemical pathways in laser-induced atmospheric aerosol formation. Scientific Reports, 2015, 5, 14978.	1.6	17
359	Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign. Atmospheric Chemistry and Physics, 2017, 17, 10291-10314.	1.9	17
360	Characterization of primary and aged wood burning and coal combustion organic aerosols in an environmental chamber and its implications for atmospheric aerosols. Atmospheric Chemistry and Physics, 2021, 21, 10273-10293.	1.9	17

#	Article	IF	CITATIONS
361	Empirical ozone isopleths as a tool to identify ozone production regimes. Geophysical Research Letters, 2001, 28, 2369-2372.	1.5	16
362	Comparison of Horizontal and Vertical Scintillometer Crosswinds during Strong Foehn with Lidar and Aircraft Measurements. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1975-1988.	0.5	16
363	Mass spectral characterization of secondary organic aerosol from urban cooking and vehicular sources. Atmospheric Chemistry and Physics, 2021, 21, 15065-15079.	1.9	16
364	Variability of indicator values for ozone production sensitivity: a model study in Switzerland and San Joaquin Valley (California). Atmospheric Environment, 2001, 35, 5593-5604.	1.9	15
365	Nocturnal trans-alpine transport of ozone and its effects on air quality on the Swiss Plateau. Atmospheric Environment, 2004, 38, 4539-4550.	1.9	15
366	The influence of south foehn on the ozone mixing ratios at the high alpine site Arosa. Atmospheric Environment, 2005, 39, 2945-2955.	1.9	15
367	Wet deposition of fossil and non-fossil derived particulate carbon: Insights from radiocarbon measurement. Atmospheric Environment, 2015, 115, 257-262.	1.9	15
368	Contribution of bacteria-like particles to PM2.5 aerosol in urban and rural environments. Atmospheric Environment, 2017, 160, 97-106.	1.9	15
369	Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites. Atmospheric Chemistry and Physics, 2021, 21, 8273-8292.	1.9	15
370	Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements. Atmospheric Chemistry and Physics, 2021, 21, 12809-12833.	1.9	15
371	Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030. Atmospheric Chemistry and Physics, 2020, 20, 15665-15680.	1.9	15
372	Wood combustion particles induce adverse effects to normal and diseased airway epithelia. Environmental Sciences: Processes and Impacts, 2017, 19, 538-548.	1.7	14
373	Ambient and laboratory observations of organic ammonium salts in PM ₁ . Faraday Discussions, 2017, 200, 331-351.	1.6	14
374	Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 2018, 18, 7379-7391.	1.9	14
375	Cooking and electronic cigarettes leading to large differences between indoor and outdoor particle composition and concentration measured by aerosol mass spectrometry. Environmental Sciences: Processes and Impacts, 2020, 22, 1382-1396.	1.7	14
376	Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition. Atmospheric Chemistry and Physics, 2021, 21, 14907-14925.	1.9	14
377	Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time. Meteorologische Zeitschrift, 2016, 25, 267-279.	0.5	13
378	Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site. Atmospheric Chemistry and Physics, 2019, 19, 3645-3672.	1.9	13

#	Article	IF	CITATIONS
379	Carbon monoxide measurements from 76° N to 59° S and over the South Tasman Sea. Journal of Geophysical Research, 1998, 103, 16731-16736.	3.3	12
380	Simultaneous retrieval of aerosol and surface optical properties using data of the Multi-angle Imaging SpectroRadiometer (MISR). Remote Sensing of Environment, 2007, 107, 120-137.	4.6	12
381	Influence of various emission scenarios on ozone in Europe. Ecological Modelling, 2008, 217, 209-218.	1.2	12
382	Implementing marine organic aerosols into the GEOS-Chem model. Geoscientific Model Development, 2015, 8, 619-629.	1.3	12
383	Contribution of methane to aerosol carbon mass. Atmospheric Environment, 2016, 141, 41-47.	1.9	12
384	Influence of local production and vertical transport on the organic aerosol budget over Paris. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8276-8296.	1.2	12
385	An evaluation of source apportionment of fine OC and PM _{2.5} by multiple methods: APHH-Beijing campaigns as a case study. Faraday Discussions, 2021, 226, 290-313.	1.6	12
386	Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001–2018. Atmospheric Chemistry and Physics, 2021, 21, 7149-7170.	1.9	12
387	Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry. Atmospheric Chemistry and Physics, 2021, 21, 10625-10641.	1.9	12
388	Modeling the effect of reduced traffic due to COVID-19 measures on air quality using a chemical transport model: impacts on the Po Valley and the Swiss Plateau regions. Environmental Science Atmospheres, 2021, 1, 228-240.	0.9	12
389	Fossil and Non-Fossil Sources of Different Carbonaceous Fractions in Fine and Coarse Particles by Radiocarbon Measurement. Radiocarbon, 2013, 55, .	0.8	11
390	EURODELTA III exercise: An evaluation of air quality models' capacity to reproduce the carbonaceous aerosol. Atmospheric Environment: X, 2019, 2, 100018.	0.8	11
391	Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. Journal of Environmental Sciences, 2020, 95, 99-110.	3.2	11
392	Automated alternating sampling of PM10 and PM2.5 with an online XRF spectrometer. Atmospheric Environment: X, 2020, 5, 100065.	0.8	11
393	Photodegradation of α-Pinene Secondary Organic Aerosol Dominated by Moderately Oxidized Molecules. Environmental Science & Technology, 2021, 55, 6936-6943.	4.6	11
394	Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry. Atmospheric Chemistry and Physics, 2022, 22, 7739-7761.	1.9	11
395	Scientific goals and experiments of the project "winter precipitation at Mount Rigi― An overview. Water, Air, and Soil Pollution, 1993, 68, 1-14.	1.1	10
396	Spectral analysis of boundary layer ozone data from the EUROTRAC TOR network. Journal of Geophysical Research, 2004, 109, .	3.3	10

#	Article	IF	CITATIONS
397	Recent Developments in the Mass Spectrometry of Atmospheric Aerosols. European Journal of Mass Spectrometry, 2010, 16, 389-395.	0.5	10
398	New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols. Journal of Chromatography A, 2011, 1218, 9288-9294.	1.8	10
399	Characterization of iceâ€nucleating bacteria using onâ€line electron impact ionization aerosol mass spectrometry. Journal of Mass Spectrometry, 2015, 50, 662-671.	0.7	10
400	Mitigation of Secondary Organic Aerosol Formation from Log Wood Burning Emissions by Catalytic Removal of Aromatic Hydrocarbons. Environmental Science & Technology, 2018, 52, 13381-13390.	4.6	10
401	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
402	Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3Âkm MODIS AODs: case study of Tehran, Iran. Journal of Environmental Health Science & Engineering, 2021, 19, 1-21.	1.4	10
403	A thermally driven wind system influencing concentrations of ozone precursors and photo-oxidants at a receptor site in the Alpine foothills [Einfluß eines thermisch erzeugten Windsystems auf Konzentrationen von Ozon-Vorläferschadstoffen und Photooxidantien in einem Voralpental. Meteorologische Zeitschrift. 1993. 2. 167-177.	0.5	10
404	Constraining the response factors of an extractive electrospray ionization mass spectrometer for near-molecular aerosol speciation. Atmospheric Measurement Techniques, 2021, 14, 6955-6972.	1.2	10
405	Airborne measurements of atmospheric aerosol particles and trace gases during photosmog episodes over the Swiss Plateau and the Southern Pre-Alpine Region. Atmospheric Environment, 1998, 32, 3381-3392.	1.9	9
406	Marine and urban influences on summertime PM2.5 aerosol in the Po basin using mobile measurements. Atmospheric Environment, 2015, 120, 447-454.	1.9	9
407	Characteristics of wintertime VOCs in urban Beijing: Composition and source apportionment. Atmospheric Environment: X, 2021, 9, 100100.	0.8	9
408	Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs). Atmospheric Measurement Techniques, 2020, 13, 5293-5301.	1.2	9
409	Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environmental Research Letters, 2022, 17, 034032.	2.2	9
410	Characteristics of marine boundary layers during two Lagrangian measurement periods: 1. General conditions and mean characteristics. Journal of Geophysical Research, 1999, 104, 21751-21765.	3.3	8
411	Why air quality in the Alps remains a matter of concern. The impact of organic pollutants in the alpine area. Environmental Science and Pollution Research, 2014, 21, 252-267.	2.7	8
412	The ambient aerosol characterization during the prescribed bushfire season in Brisbane 2013. Science of the Total Environment, 2016, 560-561, 225-232.	3.9	8
413	Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM ₁₀ samples from nine sites in central Europe. Atmospheric Chemistry and Physics, 2018, 18, 2155-2174.	1.9	7
414	Summertime Aerosol over the West of Ireland Dominated by Secondary Aerosol during Long-Range Transport. Atmosphere, 2019, 10, 59.	1.0	7

#	Article	IF	CITATIONS
415	Composition and origin of PM _{2.5} aerosol particles in the upper Rhine valley in summer. Atmospheric Chemistry and Physics, 2019, 19, 13189-13208.	1.9	7
416	Detection of trace metals in biogas using extractive electrospray ionization high-resolution mass spectrometry. Renewable Energy, 2021, 169, 780-787.	4.3	7
417	Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization. Atmospheric Measurement Techniques, 2021, 14, 5913-5923.	1.2	7
418	Source attribution and quantification of atmospheric nickel concentrations in an industrial area in the United Kingdom (UK). Environmental Pollution, 2022, 293, 118432.	3.7	7
419	High-frequency gaseous and particulate chemical characterization using extractive electrospray ionization mass spectrometry (Dual-Phase-EESI-TOF). Atmospheric Measurement Techniques, 2022, 15, 3747-3760.	1.2	7
420	Towards On-Line ¹⁴ C Analysis of Carbonaceous Aerosol Fractions. Radiocarbon, 2010, 52, 761-768.	0.8	6
421	Similarities in STXM-NEXAFS Spectra of Atmospheric Particles and Secondary Organic Aerosol Generated from Glyoxal, α-Pinene, Isoprene, 1,2,4-Trimethylbenzene, and d-Limonene. Aerosol Science and Technology, 2013, 47, 543-555.	1.5	6
422	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines. Environmental Science & Technology, 2017, 51, 3621-3629.	4.6	6
423	Solar "brightening―impact on summer surface ozone between 1990 and 2010 in Europe – a model sensitivity study of the influence of the aerosol–radiation interactions. Atmospheric Chemistry and Physics, 2018, 18, 9741-9765.	1.9	6
424	Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in MÄfgurele, Romania. Atmosphere, 2020, 11, 385.	1.0	6
425	Airborne NMHC measurements under various pollution conditions. International Journal of Vehicle Design, 2001, 27, 217.	0.1	5
426	Unexpected vertical profiles over complex terrain due to the incomplete formulation of transport processes in the SAIMM/UAM-V air quality model. Environmental Modelling and Software, 2002, 17, 747-762.	1.9	5
427	Combustion process apportionment of carbonaceous particulate emission from a diesel fuel burner. Journal of Aerosol Science, 2016, 100, 61-72.	1.8	5
428	Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50. Geoscientific Model Development, 2021, 14, 1681-1697.	1.3	5
429	New Insight into the Measurements of Particle-Bound Metals in the Urban and Remote Atmospheres of the Sarajevo Canton and Modeled Impacts of Particulate Air Pollution in Bosnia and Herzegovina. Environmental Science & Technology, 2022, 56, 7052-7062.	4.6	5
430	Modelling of Air Quality with CAMx: A Case Study in Switzerland. Water, Air and Soil Pollution, 2003, 3, 289-305.	0.8	4
431	Oxygen isotope analysis of levoglucosan, a tracer of wood burning, in experimental and ambient aerosol samples. Rapid Communications in Mass Spectrometry, 2017, 31, 2101-2108.	0.7	4
432	Organic aerosol source apportionment by using rolling positive matrix factorization: Application to a Mediterranean coastal city. Atmospheric Environment: X, 2022, 14, 100176.	0.8	4

#	Article	IF	CITATIONS
433	Modelling nitrogen deposition: dry deposition velocities on various land-use types in Switzerland. International Journal of Environment and Pollution, 2018, 64, 230.	0.2	3
434	Evolution of size and composition of fine particulate matter in the Delhi megacity during later winter. Atmospheric Environment, 2021, 267, 118752.	1.9	3
435	Temporal variations, regional contribution, and cluster analyses of ozone and NOx in a middle eastern megacity during summertime over 2017–2019. Environmental Science and Pollution Research, 2021, , 1.	2.7	3
436	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	3.9	3
437	Fragment ion–functional group relationships in organic aerosols using aerosol mass spectrometry and mid-infrared spectroscopy. Atmospheric Measurement Techniques, 2022, 15, 2857-2874.	1.2	3
438	Altitude Aerosol Measurements in Central France: Seasonality, Sources and Freeâ€Troposphere/Boundary Layer Segregation. Earth and Space Science, 2021, 8, e2019EA001018.	1.1	2
439	Aerosol Modelling with CAMX4 and PMCAMX: A Comparison Study. , 2007, , 247-256.		2
440	Modelling nitrogen deposition: dry deposition velocities on various land-use types in Switzerland. International Journal of Environment and Pollution, 2018, 64, 230.	0.2	2
441	Investigating sources of surface ozone in central Europe during the hot summer in 2018: High temperatures, but not so high ozone. Atmospheric Environment, 2022, , 119099.	1.9	2
442	Online detection of trace volatile organic sulfur compounds in a complex biogas mixture with proton-transfer-reaction mass spectrometry. Renewable Energy, 2022, 196, 1197-1203.	4.3	2
443	Contribution of Ship Emissions to the Concentration and Deposition of Pollutants in Europe: Seasonal and Spatial Variation. Springer Proceedings in Complexity, 2016, , 265-270.	0.2	1
444	Real-Time Characterization of Aerosol Particle Composition During Winter High-Pollution Events in China. , 2017, , 221-244.		0
445	Umwandlung von Spurenstoffen und ihre Auswirkungen auf die AtmosphÃ r e. , 2000, , 195-382.		0
446	Aerosol Formation from Isoprene: Determination of Particle Nucleation and Growth Rates. , 2007, , 989-993.		0
447	A Model Study on the Effects of Emission Reductions on European Air Quality Between 1990 and 2020. Springer Proceedings in Complexity, 2014, , 275-280.	0.2	0
448	Modelling Organic Aerosol in Europe: Application of the CAMx Model with a Volatility Basis Set Within the Eurodelta III Exercise. Springer Proceedings in Complexity, 2016, , 11-15.	0.2	0
449	Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities. , 2016, , 177-218.		0
450	The Impact of "Brightening―on Surface O3 Concentrations over Europe Between 1990 and 2010. Springer Proceedings in Complexity, 2018, , 31-36.	0.2	0

#	Article	IF	CITATIONS
451	Source Apportionment of Inorganic Aerosols in Europe and Role of Biogenic VOC Emissions. Springer Proceedings in Complexity, 2018, , 375-379.	0.2	0
452	Effects of Using Two Different Biogenic Emission Models on Ozone and Particles in Europe. Springer Proceedings in Complexity, 2020, , 29-34.	0.2	0
453	Contribution of Biogenic Emissions to Carbonaceous Aerosols in Summer and Winter in Switzerland: A Modelling Study. NATO Security Through Science Series C: Environmental Security, 2008, , 101-108.	0.1	0
454	Role of Organic Aerosol Chemistry Schemes on Particulate Matter Modeling in Europe. Springer Proceedings in Complexity, 2021, , 3-9.	0.2	0
455	Same Model (CAMx6.50), Same Year (2010), Two Different European Projects: How Similar Are the Results?. Springer Proceedings in Complexity, 2021, , 95-100.	0.2	0