Ariel Orellana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6818607/publications.pdf Version: 2024-02-01

ADIEL ODELLANA

#	Article	IF	CITATIONS
1	Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life. Genomics, 2022, 114, 305-315.	1.3	5
2	Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nature Plants, 2022, 8, 656-669.	4.7	23
3	Membrane Transport Nucleotide Sugar Transporters. , 2021, , 1070-1072.		0
4	Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics, 2021, 22, 17.	1.2	14
5	SARS-CoV-2 infection in asymptomatic healthcare workers at a clinic in Chile. PLoS ONE, 2021, 16, e0245913.	1.1	16
6	Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. Plant Physiology, 2021, 185, 914-933.	2.3	10
7	Plant ecological genomics at the limits of life in the Atacama Desert. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
8	Identification of SNPs and InDels associated with berry size in table grapes integrating genetic and transcriptomic approaches. BMC Plant Biology, 2020, 20, 365.	1.6	18
9	Functional Interchangeability of Nucleotide Sugar Transporters URGT1 and URGT2 Reveals That urgt1 and urgt2 Cell Wall Chemotypes Depend on Their Spatio-Temporal Expression. Frontiers in Plant Science, 2020, 11, 594544.	1.7	2
10	New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. Journal of Experimental Botany, 2019, 70, 5071-5088.	2.4	14
11	Whole Genome Sequence, Variant Discovery and Annotation in Mapuche-Huilliche Native South Americans. Scientific Reports, 2019, 9, 2132.	1.6	12
12	Comparative Transcriptome Profiling in a Segregating Peach Population with Contrasting Juiciness Phenotypes. Journal of Agricultural and Food Chemistry, 2019, 67, 1598-1607.	2.4	5
13	A <i>Prunus persica</i> genomeâ€wide RNAâ€seq approach uncovers major differences in the transcriptome among chilling injury sensitive and nonâ€sensitive varieties. Physiologia Plantarum, 2019, 166, 772-793.	2.6	28
14	bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress. Journal of Cellular Biochemistry, 2018, 119, 6857-6868.	1.2	16
15	UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. Plant Cell, 2017, 29, 129-143.	3.1	60
16	Global gene expression analysis provides insight into local adaptation to geothermal streams in tadpoles of the Andean toad Rhinella spinulosa. Scientific Reports, 2017, 7, 1966.	1.6	10
17	The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4261-4266.	3.3	52
18	Identification of Novel Components of the Unfolded Protein Response in Arabidopsis. Frontiers in Plant Science, 2016, 7, 650.	1.7	18

#	Article	IF	CITATIONS
19	The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance. Frontiers in Plant Science, 2016, 7, 1081.	1.7	17
20	PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist, 2016, 211, 65-74.	3.5	119
21	The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology, 2016, 26, 913-925.	1.3	38
22	The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development. Nature Communications, 2016, 7, 12119.	5.8	53
23	Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. Journal of Molecular Biology, 2016, 428, 3150-3165.	2.0	45
24	Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight. BMC Plant Biology, 2016, 16, 104.	1.6	18
25	Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach. Journal of Proteomics, 2016, 131, 71-81.	1.2	17
26	Comparative Study of Two Table Grape Varieties with Contrasting Texture during Cold Storage. Molecules, 2015, 20, 3667-3680.	1.7	17
27	The Dynamic of the Splicing of bZIP60 and the Proteins Encoded by the Spliced and Unspliced mRNAs Reveals Some Unique Features during the Activation of UPR in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0122936.	1.1	27
28	The UDP-glucose: glycoprotein glucosyltransferase (UGGT), a key enzyme in ER quality control, plays a significant role in plant growth as well as biotic and abiotic stress in Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 127.	1.6	67
29	bZIP17 and bZIP60 Regulate the Expression of BiP3 and Other Salt Stress Responsive Genes in an UPR-Independent Manner in <i>Arabidopsis thaliana</i> . Journal of Cellular Biochemistry, 2015, 116, 1638-1645.	1.2	57
30	Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L.) Batsch] using QTL analysis and deep sequencing. Tree Genetics and Genomes, 2015, 11, 1.	0.6	82
31	The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11563-11568.	3.3	113
32	Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biology, 2014, 14, 7.	1.6	115
33	Biochemical and physiological study of the firmness of table grape berries. Postharvest Biology and Technology, 2014, 93, 15-23.	2.9	46
34	Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance. Journal of Proteomics, 2013, 91, 309-330.	1.2	14
35	Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. BMC Genomics, 2013, 14, 878.	1.2	50
36	The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45, 487-494.	9.4	1,031

#	Article	IF	CITATIONS
37	Using genomics to improve fruit quality. Biological Research, 2013, 46, 347-352.	1.5	28
38	Arabidopsis thaliana AtUTr7 Encodes a Golgi-Localized UDP–Glucose/UDP–Galactose Transporter that Affects Lateral Root Emergence. Molecular Plant, 2012, 5, 1263-1280.	3.9	31
39	In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics. Cell Calcium, 2012, 52, 397-404.	1.1	25
40	AtAPY1 and AtAPY2 Function as Golgi-Localized Nucleoside Diphosphatases in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1913-1925.	1.5	30
41	ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nature Communications, 2012, 3, 941.	5.8	233
42	IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses. PLoS ONE, 2012, 7, e31944.	1.1	200
43	Assessment of Prunus persica fruit softening using a proteomics approach. Journal of Proteomics, 2012, 75, 1618-1638.	1.2	52
44	Molecular and physiological study of postharvest rachis browning of table grape cv Red Globe. Postharvest Biology and Technology, 2012, 72, 47-56.	2.9	32
45	The physiological role of the unfolded protein response in plants. Biological Research, 2011, 44, 75-80.	1.5	93
46	Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics, 2010, 11, 43.	1.2	107
47	Photosynthesis and metabolism interact during acclimation of <i>Arabidopsis thaliana</i> to high irradiance and sulphur depletion. Plant, Cell and Environment, 2010, 33, 1974-1988.	2.8	71
48	The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDPâ€glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in <i>Arabidopsis thaliana</i> . Plant Journal, 2010, 61, 423-435.	2.8	51
49	Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics, 2009, 10, 423.	1.2	63
50	Functional Genomics in Peach. , 2009, , 259-275.		3
51	Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis. Current Opinion in Plant Biology, 2008, 11, 244-251.	3.5	61
52	AtHMA1 Is a Thapsigargin-sensitive Ca2+/Heavy Metal Pump. Journal of Biological Chemistry, 2008, 283, 9633-9641.	1.6	124
53	Identification of woolliness response genes in peach fruit after post-harvest treatments. Journal of Experimental Botany, 2008, 59, 1973-1986.	2.4	78
54	Efecto del acondicionado previo al almacenaje refrigerado sobre la calidad de ciruelas 'Constanza'. Bragantia, 2008, 67, 233-242.	1.3	0

#	Article	IF	CITATIONS
55	The Import of S-Adenosylmethionine into the Golgi Apparatus Is Required for the Methylation of Homogalacturonan. Plant Physiology, 2007, 145, 504-512.	2.3	36
56	Complex formation regulates the glycosylation of the reversibly glycosylated polypeptide. Planta, 2007, 226, 335-345.	1.6	26
57	Seasonal variation in the development of chilling injury in â€~O'Henry' peaches. Scientia Horticulturae, 2006, 110, 79-83.	1.7	30
58	Nucleotide-sugar transporters: structure, function and roles in vivo. Brazilian Journal of Medical and Biological Research, 2006, 39, 1149-1158.	0.7	72
59	JUICE: a data management system that facilitates the analysis of large volumes of information in an EST project workflow. BMC Bioinformatics, 2006, 7, 513.	1.2	9
60	AtUTr1, a UDP-glucose/UDP-galactose Transporter from Arabidopsis thaliana, Is Located in the Endoplasmic Reticulum and Up-regulated by the Unfolded Protein Response*. Journal of Biological Chemistry, 2006, 281, 9145-9151.	1.6	45
61	AtUTr1 a UDPâ€galactose/UDPâ€glucose transporter from Arabidopsis thaliana is located at the endoplasmic reticulum and is involved in protein folding quality control. FASEB Journal, 2006, 20, A55.	0.2	0
62	A Rapid and Efficient Method for Purifying High Quality Total RNA from Peaches (Prunus persica) for Functional Genomics Analyses. Biological Research, 2005, 38, 83-8.	1.5	215
63	AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. Planta, 2005, 222, 521-529.	1.6	39
64	Biosynthesis of non-cellulosic polysaccharides in the Golgi apparatus. Topological considerations. Plant Biosystems, 2005, 139, 42-45.	0.8	2
65	A Thapsigargin-Sensitive Ca2+ Pump Is Present in the Pea Golgi Apparatus Membrane. Plant Physiology, 2002, 129, 1820-1828.	2.3	43
66	Transport of UDP-galactose in Plants. Journal of Biological Chemistry, 2002, 277, 32923-32929.	1.6	96
67	Immunopurification of Golgi vesicles by magnetic sorting. Journal of Immunological Methods, 2002, 263-271.	0.6	62
68	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283-2295.	3.1	142
69	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283.	3.1	0
70	The Catalytic Site of the Pectin Biosynthetic Enzyme α-1,4-Galacturonosyltransferase Is Located in the Lumen of the Golgi. Plant Physiology, 2001, 127, 360-371.	2.3	129
71	Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. Plant Cell, 2001, 13, 2283-2295.	3.1	102
72	KINETIC CHARACTERIZATION OF CALCIUM UPTAKE BY THE RAT LIVER GOLGI APPARATUS. Cell Biology International, 2000, 24, 229-233.	1.4	21

#	Article	IF	CITATIONS
73	GDP-Fucose Uptake into the Golgi Apparatus during Xyloglucan Biosynthesis Requires the Activity of a Transporter-Like Protein Other Than the UDP-Glucose Transporter. Plant Physiology, 2000, 122, 867-878.	2.3	47
74	Enzymatic Synthesis and Purification of [3H]Uridine Diphosphate Galacturonic Acid for Use in Studying Golgi-Localized Transporters. Analytical Biochemistry, 1999, 272, 224-231.	1.1	18
75	Xyloglucan Fucosyltransferase, an Enzyme Involved in Plant Cell Wall Biosynthesis. Science, 1999, 284, 1976-1979.	6.0	285
76	Metabolism of Uridine 5′-Diphosphate-Glucose in Golgi Vesicles from Pea Stems1. Plant Physiology, 1998, 117, 1007-1014.	2.3	30
77	Intracellular iron regulates iron absorption and IRP activity in intestinal epithelial (Caco-2) cells. American Journal of Physiology - Renal Physiology, 1997, 273, G275-G280.	1.6	23
78	Topography and Function of Golgi Uridine-5[prime]-Diphosphatase from Pea Stems. Plant Physiology, 1997, 114, 99-107.	2.3	28
79	Peroxisome Proliferators and Signal Transduction. Annals of the New York Academy of Sciences, 1996, 804, 403-412.	1.8	5
80	Evidence for a UDP-Glucose Transporter in Golgi Apparatus-Derived Vesicles from Pea and Its Possible Role in Polysaccharide Biosynthesis. Plant Physiology, 1996, 112, 1585-1594.	2.3	83
81	Ciprofibrate, a carcinogenic peroxisome proliferator, increases the phosphorylation of epidermal-growth-factor receptor in isolated rat hepatocytes. FEBS Journal, 1993, 215, 903-906.	0.2	31
82	A single protein catalyzes both N-deacetylation and N-sulfation during the biosynthesis of heparan sulfate Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3885-3888.	3.3	79
83	Induction of peroxisomal fatty acyl-coenzyme A oxidase and total carnitine acetyl-coenzyme A transferase in primary cultures of rat hepatocytes by garlic extracts. Toxicology Letters, 1992, 60, 11-17.	0.4	5
84	Palmitoyl-CoA and the acyl-CoA thioester of the carcinogenic peroxisome-proliferator ciprofibrate potentiate diacylglycerol-activated protein kinase C by decreasing the phosphatidylserine requirement of the enzyme. FEBS Journal, 1990, 190, 57-61.	0.2	49
85	Potentiation of diacylglycerol-activated protein kinase C by acyl-coenzyme a thioesters of hypolipidaemic drugs. Biochemical and Biophysical Research Communications, 1989, 159, 1026-1031.	1.0	67
86	Diacylglycerol activation of protein kinase C is modulated by long-chain acyl-CoA. Biochemical and Biophysical Research Communications, 1988, 152, 987-992.	1.0	93