Brian Gaylord

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facilitation alters climate change risk on rocky shores. Ecology, 2022, 103, e03596.	3.2	10
2	Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes. Biogeosciences, 2022, 19, 689-699.	3.3	2
3	Commentary: Overstated Potential for Seagrass Meadows to Mitigate Coastal Ocean Acidification. Frontiers in Marine Science, 2022, 9, .	2.5	2
4	Coastâ€wide evidence of low pH amelioration by seagrass ecosystems. Global Change Biology, 2021, 27, 2580-2591.	9.5	56
5	Seagrass-driven changes in carbonate chemistry enhance oyster shell growth. Oecologia, 2021, 196, 565-576.	2.0	13
6	Flow, form and force: methods and frameworks for field studies of macroalgal biomechanics. Journal of Experimental Botany, 2021, , .	4.8	3
7	Biological modification of seawater chemistry by an ecosystem engineer, the California mussel, <i>Mytilus californianus</i> . Limnology and Oceanography, 2020, 65, 157-172.	3.1	9
8	Open Wave Height Logger: An open source pressure sensor data logger for wave measurement. Limnology and Oceanography: Methods, 2020, 18, 335-345.	2.0	19
9	Brief exposure to intense turbulence induces a sustained life-history shift in echinoids. Journal of Experimental Biology, 2018, 222, .	1.7	3
10	Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecological Applications, 2018, 28, 1694-1714.	3.8	54
11	Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 2017, 7, 81-85.	18.8	164
12	Chemical and biological impacts of ocean acidification along the west coast of North America. Estuarine, Coastal and Shelf Science, 2016, 183, 260-270.	2.1	121
13	Edge effects reverse facilitation by a widespread foundation species. Scientific Reports, 2016, 6, 37573.	3.3	26
14	Ocean acidification alters the response of intertidal snails to a key sea star predator. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160890.	2.6	61
15	Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence. Royal Society Open Science, 2015, 2, 150114.	2.4	19
16	Marine Population Connectivity: Reconciling Large-Scale Dispersal and High Self-Retention. American Naturalist, 2015, 185, 196-211.	2.1	53
17	Ocean acidification research in the â€~post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 185, 33-42.	1.8	18
18	Patterns of Mass Mortality among Rocky Shore Invertebrates across 100 km of Northeastern Pacific Coastline. PLoS ONE, 2015, 10, e0126280.	2.5	45

BRIAN GAYLORD

#	Article	IF	CITATIONS
19	Effect of Elevated pCO2 on Metabolic Responses of Porcelain Crab (Petrolisthes cinctipes) Larvae Exposed to Subsequent Salinity Stress. PLoS ONE, 2014, 9, e109167.	2.5	6
20	Predicting the Effects of Ocean Acidification on Predator-Prey Interactions: A Conceptual Framework Based on Coastal Molluscs. Biological Bulletin, 2014, 226, 211-222.	1.8	108
21	The Role of Temperature in Determining Species' Vulnerability to Ocean Acidification: A Case Study Using Mytilus galloprovincialis. PLoS ONE, 2014, 9, e100353.	2.5	64
22	Larval carryâ€over effects from ocean acidification persist in the natural environment. Global Change Biology, 2013, 19, 3317-3326.	9.5	75
23	Turbulent shear spurs settlement in larval sea urchins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6901-6906.	7.1	58
24	Functional impacts of ocean acidification in an ecologically critical foundation species. Journal of Experimental Biology, 2011, 214, 2586-2594.	1.7	204
25	Flow Forces on Seaweeds: Field Evidence for Roles of Wave Impingement and Organism Inertia. Biological Bulletin, 2008, 215, 295-308.	1.8	50
26	Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography, 2008, 53, 1589-1603.	3.1	78
27	Hydrodynamic Context for Considering Turbulence Impacts on External Fertilization. Biological Bulletin, 2008, 214, 315-318.	1.8	17
28	Spatial patterns of flow and their modification within and around a giant kelp forest. Limnology and Oceanography, 2007, 52, 1838-1852.	3.1	148
29	MACROALGAL SPORE DISPERSAL IN COASTAL ENVIRONMENTS: MECHANISTIC INSIGHTS REVEALED BY THEORY AND EXPERIMENT. Ecological Monographs, 2006, 76, 481-502.	5.4	105
30	MACROALGAL SPORE DISPERSAL IN COASTAL ENVIRONMENTS: MECHANISTIC INSIGHTS REVEALED BY THEORY AND EXPERIMENT. , 2006, 76, 481.		1
31	MARINE RESERVES EXPLOIT POPULATION STRUCTURE AND LIFE HISTORY IN POTENTIALLY IMPROVING FISHERIES YIELDS. , 2005, 15, 2180-2191.		76
32	Physical–biological coupling in spore dispersal of kelp forest macroalgae. Journal of Marine Systems, 2004, 49, 19-39.	2.1	62
33	Modulation of wave forces on kelp canopies by alongshore currents. Limnology and Oceanography, 2003, 48, 860-871.	3.1	57
34	A PHYSICALLY BASED MODEL OF MACROALGAL SPORE DISPERSAL IN THE WAVE AND CURRENT-DOMINATED NEARSHORE. Ecology, 2002, 83, 1239-1251.	3.2	159
35	Biological implications of surfâ€zone flow complexity. Limnology and Oceanography, 2000, 45, 174-188.	3.1	97
36	Detailing agents of physical disturbance: wave-induced velocities and accelerations on a rocky shore. Journal of Experimental Marine Biology and Ecology, 1999, 239, 85-124.	1.5	116

#	Article	IF	CITATIONS
37	The menace of momentum: Dynamic forces on flexible organisms. Limnology and Oceanography, 1998, 43, 955-968.	3.1	101
38	Mechanical Consequences of Size in Wave wept Algae. Ecological Monographs, 1994, 64, 287-313.	5.4	211