
Paul Westerhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6817667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparing the morphologies and adsorption behavior of electrospun polystyrene composite fibers with OD fullerenes, 1D multiwalled carbon nanotubes and 2D graphene oxides. Chemical Engineering Journal Advances, 2022, 9, 100199.	2.4	10
2	Boron-doped diamond electrodes degrade short- and long-chain per- and polyfluorinated alkyl substances in real industrial wastewaters. Journal of Environmental Chemical Engineering, 2022, 10, 107192.	3.3	24
3	Determining nanoform similarity via assessment of surface reactivity by abiotic and in vitro assays. NanoImpact, 2022, 26, 100390.	2.4	10
4	Kinetics and Transformations of Diverse Dissolved Organic Matter Fractions with Sulfate Radicals. Environmental Science & Technology, 2022, 56, 4457-4466.	4.6	38
5	Bromine Radical (Br [•] and Br ₂ ^{•–}) Reactivity with Dissolved Organic Matter and Brominated Organic Byproduct Formation. Environmental Science & Technology, 2022, 56, 5189-5199.	4.6	33
6	Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers. Science of the Total Environment, 2022, 825, 153966.	3.9	12
7	Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. Journal of Hazardous Materials, 2022, 433, 128770.	6.5	15
8	Molecular Engineering of 2D Nanomaterial Fieldâ€Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum. Advanced Materials, 2022, 34, e2106975.	11.1	11
9	Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. Environmental Science & Technology, 2022, 56, 5355-5370.	4.6	61
10	Water insecurity in the Global North: A review of experiences in U.S. colonias communities along the Mexico border. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	16
11	Impacts of graphitic nanofertilizers on nitrogen cycling in a sandy, agricultural soil. Journal of Nanoparticle Research, 2022, 24, .	0.8	4
12	Modular, adaptive, and decentralised water infrastructure: promises and perils for water justice. Current Opinion in Environmental Sustainability, 2022, 57, 101202.	3.1	18
13	Lithium occurrence in drinking water sources of the United States. Chemosphere, 2022, 305, 135458.	4.2	9
14	Titanium oxide improves boron nitride photocatalytic degradation of perfluorooctanoic acid. Chemical Engineering Journal, 2022, 448, 137735.	6.6	35
15	Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environmental Science & Technology, 2022, 56, 11111-11131.	4.6	112
16	Earth-abundant elements a sustainable solution for electrocatalytic reduction of nitrate. Applied Catalysis B: Environmental, 2021, 281, 119465.	10.8	98
17	Reactivity of Chlorine Radicals (Cl [•] and Cl ₂ ^{•–}) with Dissolved Organic Matter and the Formation of Chlorinated Byproducts. Environmental Science & Technology, 2021, 55, 689-699.	4.6	124
18	Photoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO2 nanotube-coated disc flow reactor. Chemosphere, 2021, 268, 129320.	4.2	22

#	Article	IF	CITATIONS
19	Evanescent wave interactions with nanoparticles on optical fiber modulate side emission of germicidal ultraviolet light. Environmental Science: Nano, 2021, 8, 2441-2452.	2.2	10
20	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	3.7	61
21	Dataâ€mining methods predict chlorine residuals in premise plumbing using low ost sensors. AWWA Water Science, 2021, 3, .	1.0	8
22	Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environmental Science & Technology, 2021, 55, 4287-4304.	4.6	106
23	Survey of industrial perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact, 2021, 22, 100320.	2.4	13
24	Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment. Water Research, 2021, 194, 116964.	5.3	36
25	Physical, Chemical, and Microbiological Water Quality Variation between City and Building and within Multistory Building. ACS ES&T Water, 2021, 1, 1369-1379.	2.3	9
26	Facile Surface Modification of Polyamide Membranes Using UV-Photooxidation Improves Permeability and Reduces Natural Organic Matter Fouling. Environmental Science & Technology, 2021, 55, 6984-6994.	4.6	25
27	Bridging international approaches on nanoEHS. Nature Nanotechnology, 2021, 16, 608-611.	15.6	6
28	Green Synthesis of Flower-Shaped Copper Oxide and Nickel Oxide Nanoparticles via Capparis decidua Leaf Extract for Synergic Adsorption-Photocatalytic Degradation of Pesticides. Catalysts, 2021, 11, 806.	1.6	43
29	Unified Metallic Catalyst Aging Strategy and Implications for Water Treatment. Environmental Science & Technology, 2021, 55, 11284-11293.	4.6	3
30	Superparamagnetic nanoadsorbents for the removal of trace As(III) in drinking water. Environmental Advances, 2021, 4, 100046.	2.2	9
31	Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs. Nature Communications, 2021, 12, 4101.	5.8	28
32	Roles and Knowledge Gaps of Point-of-Use Technologies for Mitigating Health Risks from Disinfection Byproducts in Tap Water: A Critical Review. Water Research, 2021, 200, 117265.	5.3	51
33	ES&T's Best Papers of 2020. Environmental Science & Technology, 2021, 55, 11489-11490.	4.6	0
34	Quantifying Nanoparticle Associated Ti, Ce, Au, and Pd Occurrence in 35 U.S. Surface Waters. ACS ES&T Water, 2021, 1, 2242-2250.	2.3	7
35	Managing and treating per―and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Science, 2021, 3, 1-23.	1.0	28
36	Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion in Chemical Engineering, 2021, 33, 100709.	3.8	3

#	Article	IF	CITATIONS
37	Contribution of wastewater- versus non-wastewater-derived sources to haloacetonitriles formation potential in a wastewater-impacted river. Science of the Total Environment, 2021, 792, 148355.	3.9	3
38	Value Propositions Provide a Roadmap for Convergent Research on Environmental Topics. Environmental Science & Technology, 2021, 55, 13579-13582.	4.6	6
39	Repeatable use assessment of silicon carbide as permanent susceptor bed in ex situ microwave remediation of petroleum-impacted soils. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100116.	2.9	3
40	Welcome to the Future: Introducing ES&T's Inaugural Early Career Editorial Advisory Board. Environmental Science & Technology, 2021, 55, 811-812.	4.6	0
41	Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (Lactuca) Tj ETQq1 1	0.78 <u>43</u> 14 r 2.2	∙gBަOverloc
42	Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NanoImpact, 2020, 17, 100199.	2.4	6
43	Haloacetonitriles and haloacetamides precursors in filter backwash and sedimentation sludge water during drinking water treatment. Water Research, 2020, 186, 116346.	5.3	20
44	Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation. Environmental Science: Nano, 2020, 7, 3255-3278.	2.2	13
45	Total organic halogen (TOX) species formation at different locations in drinking water distribution systems. Environmental Science: Water Research and Technology, 2020, 6, 2542-2552.	1.2	8
46	Geospatial Climatic Factors Influence Water Production of Solar Desiccant Driven Atmospheric Water Capture Devices. Environmental Science & Technology, 2020, 54, 8310-8322.	4.6	18
47	Germicidal glowsticks: Side-emitting optical fibers inhibit Pseudomonas aeruginosa and Escherichia coli on surfaces. Water Research, 2020, 184, 116191.	5.3	13
48	Sunlight-driven atmospheric water capture capacity is enhanced by nano-enabled photothermal desiccants. Environmental Science: Nano, 2020, 7, 2584-2594.	2.2	22
49	The Nature and Oxidative Reactivity of Urban Magnetic Nanoparticle Dust Provide New Insights into Potential Neurotoxicity Studies. Environmental Science & Technology, 2020, 54, 10599-10609.	4.6	7
50	Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water. Environmental Science & Technology, 2020, 54, 11584-11593.	4.6	79
51	Magnetically recoverable carbon-coated iron carbide with arsenic adsorptive removal properties. SN Applied Sciences, 2020, 2, 1.	1.5	6
52	Why Was My Paper Rejected without Review?. Environmental Science & Technology, 2020, 54, 11641-11644.	4.6	10
53	Stannous Chloride Reductive Treatment and Kinetics Using Hexavalent Chromium in Water Supplies. Environmental Engineering Science, 2020, 37, 649-657.	0.8	3
54	Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 51864-51872.	4.0	64

#	Article	IF	CITATIONS
55	Tracking copper, chlorine, and occupancy in a new, multi-story, institutional green building. Environmental Science: Water Research and Technology, 2020, 6, 1672-1680.	1.2	14
56	Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environmental Science and Technology Letters, 2020, 7, 613-619.	3.9	89
57	Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.	15.6	119
58	Making Waves. Environmental Science & amp; Technology, 2020, 54, 6449-6450.	4.6	7
59	Purification and removal of the low molecular weight fraction of polyDADMAC reduces <i>N</i> -nitrosodimethylamine formation during water treatment. Environmental Science: Water Research and Technology, 2020, 6, 2492-2498.	1.2	3
60	Low energy electrochemical oxidation efficiently oxidizes a common textile dye used in Thailand. Journal of Electroanalytical Chemistry, 2020, 871, 114301.	1.9	13
61	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	2.2	74
62	Portable point-of-use photoelectrocatalytic device provides rapid water disinfection. Science of the Total Environment, 2020, 737, 140044.	3.9	37
63	Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption. Environmental Science & Technology, 2020, 54, 9769-9790.	4.6	117
64	Removing per―and polyfluoroalkyl substances from groundwaters using activated carbon and ion exchange resin packed columns. AWWA Water Science, 2020, 2, e1172.	1.0	49
65	Disparities between experimental and environmental conditions: Research steps toward making electrochemical water treatment a reality. Current Opinion in Electrochemistry, 2020, 22, 9-16.	2.5	108
66	Increasing net water recovery of reverse osmosis with membrane distillation using natural thermal differentials between brine and co-located water sources: Impacts at large reclamation facilities. Water Research, 2020, 184, 116134.	5.3	28
67	Adsorption of Arsenic Ions Transforms Surface Reactivity of Engineered Cerium Oxide Nanoparticles. Environmental Science & Technology, 2020, 54, 9437-9444.	4.6	25
68	Germicidal Ultraviolet Light Does Not Damage or Impede Performance of N95 Masks Upon Multiple Uses. Environmental Science and Technology Letters, 2020, 7, 600-605.	3.9	25
69	Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers. Science of the Total Environment, 2020, 743, 140845.	3.9	18
70	Evolving Today to Best Serve Tomorrow. Environmental Science & Technology, 2020, 54, 5923-5924.	4.6	6
71	Techno-economic analysis to identify key innovations required for electrochemical oxidation as point-of-use treatment systems. Electrochimica Acta, 2020, 338, 135874.	2.6	81
72	Public perceptions for the use of nanomaterials for in-home drinking water purification devices. NanoImpact, 2020, 18, 100220.	2.4	15

#	Article	IF	CITATIONS
73	Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	39
74	The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2020, 23, 69-89.	2.9	19
75	Materials matter in phosphorus sustainability. MRS Bulletin, 2020, 45, 7-10.	1.7	10
76	Aerosol impaction-driven assembly produces evenly dispersed nanoparticle coating on polymeric water treatment membranes. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	4
77	Flame retardant performance of carbonaceous nanomaterials on polyester fabric. Polymer Testing, 2020, 86, 106497.	2.3	19
78	Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes. Separation and Purification Technology, 2020, 247, 117026.	3.9	47
79	Intrinsic p <i>K</i> _a of Nanofiltration Membrane Surfaces to Assess Fouling and Cleaning Behaviors Induced by Foulant–Membrane Electrostatic Interactions. Environmental Science & Technology, 2020, 54, 7706-7714.	4.6	22
80	Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NanoImpact, 2020, 17, .	2.4	0
81	Nanoparticle and Transparent Polymer Coatings Enable UV-C Side-Emission Optical Fibers for Inactivation of <i>Escherichia coli</i> in Water. Environmental Science & Technology, 2019, 53, 10880-10887.	4.6	19
82	Drinking water vulnerability in less-populated communities in Texas to wastewater-derived contaminants. Npj Clean Water, 2019, 2, .	3.1	8
83	Multicycle Ozonation+Bioremediation for Soils Containing Residual Petroleum. Environmental Engineering Science, 2019, 36, 1443-1451.	0.8	10
84	Interdisciplinary collaborations to address the uncertainty problem in life cycle assessment of nano-enabled products: case of the quantum dot-enabled display. Environmental Science: Nano, 2019, 6, 3256-3267.	2.2	15
85	Effects of pH, soluble organic materials, and hydraulic loading rates on orthophosphate recovery from organic wastes using ion exchange. Journal of Cleaner Production, 2019, 217, 127-133.	4.6	6
86	Sustaining Water Resources: Environmental and Economic Impact. ACS Sustainable Chemistry and Engineering, 2019, 7, 2879-2888.	3.2	32
87	Yttrium Residues in MWCNT Enable Assessment of MWCNT Removal during Wastewater Treatment. Nanomaterials, 2019, 9, 670.	1.9	7
88	Ferric reducing reactivity assay with theoretical kinetic modeling uncovers electron transfer schemes of metallic-nanoparticle-mediated redox in water solutions. Environmental Science: Nano, 2019, 6, 1791-1798.	2.2	6
89	Emerging Water Technologies: Global Pressures Force Innovation toward Drinking Water Availability and Quality. Accounts of Chemical Research, 2019, 52, 1146-1147.	7.6	13
90	Historical and Future Needs for Geospatial lodide Occurrence in Surface and Groundwaters of the United States of America. Environmental Science and Technology Letters, 2019, 6, 379-388.	3.9	24

#	Article	IF	CITATIONS
91	Chlorite formation during ClO2 oxidation of model compounds having various functional groups and humic substances. Water Research, 2019, 159, 348-357.	5.3	62
92	Food–Energy–Water Analysis at Spatial Scales for Districts in the Yangtze River Basin (China). Environmental Engineering Science, 2019, 36, 789-797.	0.8	7
93	Copper release and transformation following natural weathering of nano-enabled pressure-treated lumber. Science of the Total Environment, 2019, 668, 234-244.	3.9	12
94	Integrated Assessment of Wastewater Reuse, Exposure Risk, and Fish Endocrine Disruption in the Shenandoah River Watershed. Environmental Science & Technology, 2019, 53, 3429-3440.	4.6	27
95	Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 2019, 363, .	6.0	479
96	"Nanoblocks― A Playful Method To Learn about Nanotechnology-Enabled Water and Air Treatment. Journal of Chemical Education, 2019, 96, 708-713.	1.1	4
97	Nanobubble Technologies Offer Opportunities To Improve Water Treatment. Accounts of Chemical Research, 2019, 52, 1196-1205.	7.6	164
98	<i>In situ</i> remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 2019, 6, 1283-1302.	2.2	65
99	Catalytic Converters for Water Treatment. Accounts of Chemical Research, 2019, 52, 906-915.	7.6	111
100	TiO2-carbon nanoporous composites prepared via ZnO nanoparticle-templated carbonization of glucose adsorb and photodegrade organic pollutants in water. Journal of Water Process Engineering, 2019, 28, 331-338.	2.6	4
101	High-throughput analysis of photocatalytic reactivity of differing TiO2 formulations using 96-well microplate reactors. Chemosphere, 2019, 223, 275-284.	4.2	6
102	Scaling up Photoelectrocatalytic Reactors: A TiO2 Nanotube-Coated Disc Compound Reactor Effectively Degrades Acetaminophen. Water (Switzerland), 2019, 11, 2522.	1.2	19
103	Lower molecular weight fractions of PolyDADMAC coagulants disproportionately contribute to N-nitrosodimethylamine formation during water treatment. Water Research, 2019, 150, 466-472.	5.3	19
104	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. Environmental Science & Technology, 2019, 53, 2937-2947.	4.6	493
105	Chlorine addition prior to granular activated carbon contactors improves trihalomethane control. AWWA Water Science, 2019, 1, e1119.	1.0	6
106	Particle-modified polymeric cladding on glass optical fibers enhances radial light scattering. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1623.	0.9	11
107	Developing and interpreting aqueous functional assays for comparative property-activity relationships of different nanoparticles. Science of the Total Environment, 2018, 628-629, 1609-1616.	3.9	6
108	Life cycle considerations of nano-enabled agrochemicals: are today's tools up to the task?. Environmental Science: Nano, 2018, 5, 1057-1069.	2.2	26

#	Article	lF	CITATIONS
109	Removal of Bromide from Surface Water: Comparison Between Silver-Impregnated Graphene Oxide and Silver-Impregnated Powdered Activated Carbon. Environmental Engineering Science, 2018, 35, 988-995.	0.8	22
110	Modeled De Facto Reuse and Contaminants of Emerging Concern in Drinking Water Source Waters. Journal - American Water Works Association, 2018, 110, E2.	0.2	21
111	Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples. Water Research, 2018, 133, 264-271.	5.3	16
112	Quantification of carbon nanotubes in polymer composites. Analytical Methods, 2018, 10, 1032-1037.	1.3	3
113	Impacts of moisture content during ozonation of soils containing residual petroleum. Journal of Hazardous Materials, 2018, 344, 1101-1108.	6.5	12
114	Photon flux influence on photoelectrochemical water treatment. Electrochemistry Communications, 2018, 87, 63-65.	2.3	41
115	Trade-offs in ecosystem impacts from nanomaterial versus organic chemical ultraviolet filters in sunscreens. Water Research, 2018, 139, 281-290.	5.3	52
116	Porous Electrospun Fibers Embedding TiO ₂ for Adsorption and Photocatalytic Degradation of Water Pollutants. Environmental Science & Technology, 2018, 52, 4285-4293.	4.6	286
117	Comparison of hydrophobic and amphiphilic fractions of dissolved organic matter from a water reservoir by Fourier transform ion cyclotron resonance mass spectrometry. Journal of Soils and Sediments, 2018, 18, 1265-1278.	1.5	11
118	Coagulation behaviors of new covalently bound hybrid coagulants (CBHyC) in surface water treatment. Separation and Purification Technology, 2018, 192, 322-328.	3.9	19
119	Human health tradeoffs in wellhead drinking water treatment: Comparing exposure reduction to embedded life cycle risks. Water Research, 2018, 128, 246-254.	5.3	26
120	Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Science of the Total Environment, 2018, 613-614, 1331-1338.	3.9	99
121	Influence of ultraviolet wavelengths on kinetics and selectivity for N-gases during TiO2 photocatalytic reduction of nitrate. Applied Catalysis B: Environmental, 2018, 220, 597-606.	10.8	53
122	Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery. Chemosphere, 2018, 195, 742-748.	4.2	8
123	Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 120-126.	1.3	44
124	<i>In vitro</i> characterization of reactive oxygen species (ROS) generation by the commercially available Mesosilverâ,,¢ dietary supplement. Environmental Science: Nano, 2018, 5, 2686-2698.	2.2	5
125	Behavior of NDMA precursors at 21 full-scale water treatment facilities. Environmental Science: Water Research and Technology, 2018, 4, 1966-1978.	1.2	13
126	Non-target mass spectrometry analysis of NDMA precursors in advanced treatment for potable reuse. Environmental Science: Water Research and Technology, 2018, 4, 1944-1955.	1.2	18

#	Article	IF	CITATIONS
127	Electrochemical self-cleaning anodic surfaces for biofouling control during water treatment. Electrochemistry Communications, 2018, 96, 83-87.	2.3	31
128	Dry Powder Assay Rapidly Detects Metallic Nanoparticles in Water by Measuring Surface Catalytic Reactivity. Environmental Science & Technology, 2018, 52, 13289-13297.	4.6	15
129	Using single-particle ICP-MS for monitoring metal-containing particles in tap water. Environmental Science: Water Research and Technology, 2018, 4, 1923-1932.	1.2	26
130	Antimicrobial Efficacy and Life Cycle Impact of Silver-Containing Food Containers. ACS Sustainable Chemistry and Engineering, 2018, 6, 13086-13095.	3.2	19
131	Bromide and Other Halide Ion Removal From Drinking Waters Using Silverâ€Amended Coagulation. Journal - American Water Works Association, 2018, 110, 13-24.	0.2	4
132	Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental, 2018, 236, 546-568.	10.8	647
133	Low risk posed by engineered and incidental nanoparticles in drinking water. Nature Nanotechnology, 2018, 13, 661-669.	15.6	118
134	End-of-Life Heavy Metal Releases from Photovoltaic Panels and Quantum Dot Films: Hazardous Waste Concerns or Not?. ACS Sustainable Chemistry and Engineering, 2018, 6, 9369-9374.	3.2	16
135	Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes. Water Research, 2018, 143, 77-86.	5.3	34
136	LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification. Journal of Hazardous Materials, 2017, 323, 18-25.	6.5	23
137	Detection and dissolution of needle-like hydroxyapatite nanomaterials in infant formula. NanoImpact, 2017, 5, 22-28.	2.4	32
138	Prospecting nanomaterials in aqueous environments by cloud-point extraction coupled with transmission electron microscopy. Science of the Total Environment, 2017, 584-585, 515-522.	3.9	15
139	Zebrafish embryo toxicity of 15 chlorinated, brominated, and iodinated disinfection by-products. Journal of Environmental Sciences, 2017, 58, 302-310.	3.2	65
140	Challenges in photocatalytic reduction of nitrate as a water treatment technology. Science of the Total Environment, 2017, 599-600, 1524-1551.	3.9	224
141	Nano-enabling of strong-base ion-exchange media via a room-temperature aluminum (hydr)oxide synthesis method to simultaneously remove nitrate and fluoride. Science of the Total Environment, 2017, 599-600, 1848-1855.	3.9	15
142	Wastewater discharge impact on drinking water sources along the Yangtze River (China). Science of the Total Environment, 2017, 599-600, 1399-1407.	3.9	54
143	Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity. Science of the Total Environment, 2017, 592, 458-464.	3.9	22
144	Interpreting Interactions between Ozone and Residual Petroleum Hydrocarbons in Soil. Environmental Science & Technology, 2017, 51, 506-513.	4.6	38

#	Article	IF	CITATIONS
145	Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation. Environmental Science & Technology, 2017, 51, 13319-13326.	4.6	39
146	The efficacy and environmental implications of engineered TiO ₂ nanoparticles in a commercial floor coating. Environmental Science: Nano, 2017, 4, 2030-2042.	2.2	6
147	Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere, 2017, 188, 304-311.	4.2	97
148	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environmental Science & Technology, 2017, 51, 10274-10281.	4.6	129
149	Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment. Environmental Science: Nano, 2017, 4, 1784-1797.	2.2	22
150	High levels of endocrine pollutants in US streams during low flow due to insufficient wastewaterÂdilution. Nature Geoscience, 2017, 10, 587-591.	5.4	106
151	Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater. Science of the Total Environment, 2017, 601-602, 1008-1014.	3.9	19
152	Microwave-assisted digestion and NaOH treatment of waste-activated sludge to recover phosphorus by crystallizing struvite. Environmental Technology (United Kingdom), 2017, 38, 1211-1222.	1.2	15
153	Multi-day diurnal measurements of Ti-containing nanoparticle and organic sunscreen chemical release during recreational use of a natural surface water. Environmental Science: Nano, 2017, 4, 69-77.	2.2	55
154	How important is drinking water exposure for the risks of engineered nanoparticles to consumers?. Nanotoxicology, 2016, 10, 1-9.	1.6	34
155	Morphology, structure, and properties of metal oxide/polymer nanocomposite electrospun mats. Journal of Applied Polymer Science, 2016, 133, .	1.3	33
156	Total Value of Phosphorus Recovery. Environmental Science & Technology, 2016, 50, 6606-6620.	4.6	452
157	Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS. Analytical Chemistry, 2016, 88, 4733-4741.	3.2	37
158	Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects. Environmental Science & Technology, 2016, 50, 4587-4605.	4.6	104
159	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	4.6	191
160	Reducing environmental impacts of metal (hydr)oxide nanoparticle embedded anion exchange resins using anticipatory life cycle assessment. Environmental Science: Nano, 2016, 3, 1351-1360.	2.2	21
161	Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science: Nano, 2016, 3, 1241-1253.	2.2	101
162	Granular Activated Carbon Treatment May Result in Higher Predicted Genotoxicity in the Presence of Bromide. Environmental Science & Technology, 2016, 50, 9583-9591.	4.6	83

#	Article	IF	CITATIONS
163	Carbonaceous nano-additives augment microwave-enabled thermal remediation of soils containing petroleum hydrocarbons. Environmental Science: Nano, 2016, 3, 997-1002.	2.2	21
164	Ozone enhances biodegradability of heavy hydrocarbons in soil. Journal of Environmental Engineering and Science, 2016, 11, 7-17.	0.3	32
165	Adsorption of <scp>iii</scp> / <scp>v</scp> ions (In(<scp>iii</scp>), Ga(<scp>iii</scp>) and) Tj ETQq1 1 0.78431 nanoparticles used in the semiconductor industry. Environmental Science: Nano, 2016, 3, 1014-1026.	4 rgBT /Ov 2.2	verlock 10 Tf 14
166	Comparative analysis of the photocatalytic reduction of drinking water oxoanions using titanium dioxide. Water Research, 2016, 104, 11-19.	5.3	55
167	Treatment of Heavy, Long-Chain Petroleum-Hydrocarbon Impacted Soils Using Chemical Oxidation. Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	24
168	Comparing actual de facto wastewater reuse and its public acceptability: A three city case study. Sustainable Cities and Society, 2016, 27, 467-474.	5.1	53
169	Severe Weather Effects on Water Quality in Central Arizona. Journal - American Water Works Association, 2016, 108, E221.	0.2	6
170	Sorption and desorption of organic matter on solid-phase extraction media to isolate and identify <i>N</i> -nitrosodimethylamine precursors. Journal of Separation Science, 2016, 39, 2796-2805.	1.3	13
171	Recovery opportunities for metals and energy from sewage sludges. Bioresource Technology, 2016, 215, 215-226.	4.8	143
172	Novel Ion-Exchange Coagulants Remove More Low Molecular Weight Organics than Traditional Coagulants. Environmental Science & Technology, 2016, 50, 3897-3904.	4.6	30
173	Survey of food-grade silica dioxide nanomaterial occurrence, characterization, human gut impacts and fate across its lifecycle. Science of the Total Environment, 2016, 565, 902-912.	3.9	49
174	Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environmental Science & Technology, 2016, 50, 4018-4026.	4.6	88
175	N-Nitrosamine formation kinetics in wastewater effluents and surface waters. Environmental Science: Water Research and Technology, 2016, 2, 312-319.	1.2	11
176	A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products. PLoS ONE, 2016, 11, e0164712.	1.1	19
177	Modeling NDMA Formation Kinetics During Chloramination of Model Compounds and Surface Waters Impacted by Wastewater Discharges. ACS Symposium Series, 2015, , 79-95.	0.5	3
178	Contribution and Removal of Watershed and Cationic Polymer <i>N</i> â€Nitrosodimethylamine Precursors. Journal - American Water Works Association, 2015, 107, E152.	0.2	25
179	Extent and Impacts of Unplanned Wastewater Reuse in US Rivers. Journal - American Water Works Association, 2015, 107, E571.	0.2	29
180	Performance of the CORDEXâ€Africa regional climate simulations in representing the hydrological cycle of the Niger River basin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12425-12444.	1.2	27

#	Article	IF	CITATIONS
181	Nitrosamine Precursor Removal by BAC: A Case Study of Adsorption Versus Biotreatment. Journal - American Water Works Association, 2015, 107, E454.	0.2	27
182	Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. Environmental Science: Nano, 2015, 2, 227-244.	2.2	62
183	Control of Nanomaterials Used in Chemical Mechanical Polishing/Planarization Slurries during On-site Industrial andÂMunicipal Biological Wastewater Treatment. Frontiers of Nanoscience, 2015, 8, 247-265.	0.3	8
184	Hexavalent Chromium Removal Using UV-TiO ₂ /Ceramic Membrane Reactor. Environmental Engineering Science, 2015, 32, 676-683.	0.8	29
185	UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon. Water Research, 2015, 73, 304-310.	5.3	84
186	Colorimetric Detection of Catalytic Reactivity of Nanoparticles in Complex Matrices. Environmental Science & Technology, 2015, 49, 3611-3618.	4.6	41
187	Improved Analysis of Dissolved Organic Nitrogen in Water via Electrodialysis Pretreatment. Analytical Chemistry, 2015, 87, 2353-2359.	3.2	18
188	Spatial and Temporal Variation in De Facto Wastewater Reuse in Drinking Water Systems across the U.S.A Environmental Science & Technology, 2015, 49, 982-989.	4.6	118
189	Quantification of graphene and graphene oxide in complex organic matrices. Environmental Science: Nano, 2015, 2, 60-67.	2.2	26
190	Application of Pretreatment Methods for Reliable Dissolved Organic Nitrogen Analysis in Water—A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 249-276.	6.6	20
191	Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide. Environmental Science & Technology, 2015, 49, 9479-9488.	4.6	199
192	Simultaneous removal of nanosilver and fullerene in sequencing batch reactors for biological wastewater treatment. Chemosphere, 2015, 125, 115-121.	4.2	17
193	We Should Expect More out of Our Sewage Sludge. Environmental Science & Technology, 2015, 49, 8271-8276.	4.6	218
194	Methadone Contributes to <i>N</i> -Nitrosodimethylamine Formation in Surface Waters and Wastewaters during Chloramination. Environmental Science and Technology Letters, 2015, 2, 151-157.	3.9	70
195	Interaction of carbonaceous nanomaterials with wastewater biomass. Frontiers of Environmental Science and Engineering, 2015, 9, 823-831.	3.3	16
196	pH Effect on Nitrosamine Precursor Removal by Activated Carbon Adsorption. ACS Symposium Series, 2015, , 173-185.	0.5	0
197	Role of Chlorine Dioxide in <i>N</i> -Nitrosodimethylamine Formation from Oxidation of Model Amines. Environmental Science & Technology, 2015, 49, 11429-11437.	4.6	28
198	Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange. Water Research, 2015, 70, 130-137.	5.3	28

#	Article	IF	CITATIONS
199	Engineered Nanomaterials Impact Biological Carbon Conversion in Soils. Environmental Engineering Science, 2014, 31, 381-392.	0.8	9
200	Promoting Hydroxyl Radical Production during Ozonation of Municipal Wastewater. Ozone: Science and Engineering, 2014, 36, 229-237.	1.4	12
201	Presence in, and Release of, Nanomaterials from Consumer Products. Advances in Experimental Medicine and Biology, 2014, 811, 1-17.	0.8	39
202	Measurement of Nanomaterials in Foods: Integrative Consideration of Challenges and Future Prospects. ACS Nano, 2014, 8, 3128-3135.	7.3	118
203	Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal. Environmental Pollution, 2014, 185, 107-115.	3.7	41
204	Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm. Journal of Analytical Atomic Spectrometry, 2014, 29, 1630.	1.6	41
205	Instillation <i>versus</i> Inhalation of Multiwalled Carbon Nanotubes: Exposure-Related Health Effects, Clearance, and the Role of Particle Characteristics. ACS Nano, 2014, 8, 8911-8931.	7.3	64
206	Membrane Fouling by Vesicles and Prevention through Ozonation. Environmental Science & Technology, 2014, 48, 7349-7356.	4.6	26
207	Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environmental Science & Technology, 2014, 48, 10291-10300.	4.6	366
208	Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation. Cell Biology and Toxicology, 2014, 30, 169-188.	2.4	96
209	DBP Reactivity of Organic Matter Fractions Collected During Extreme Weather Events. ACS Symposium Series, 2014, , 257-280.	0.5	1
210	Metal and nanoparticle occurrence in biosolid-amended soils. Science of the Total Environment, 2014, 485-486, 441-449.	3.9	68
211	Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles. Environmental Science & Technology, 2014, 48, 6391-6400.	4.6	238
212	Characterization of Nanomaterials in Metal Colloid-Containing Dietary Supplement Drinks and Assessment of Their Potential Interactions after Ingestion. ACS Sustainable Chemistry and Engineering, 2014, 2, 1616-1624.	3.2	41
213	Measurement Methods to Detect, Characterize, and Quantify Engineered Nanomaterials in Foods. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 693-704.	5.9	82
214	Not your granddad's disinfection byâ€product problems and solutions. Journal - American Water Works Association, 2014, 106, 54-73.	0.2	7
215	Reshaping inland concentrate management using pretreatment and electrodialysis reversal. Journal - American Water Works Association, 2014, 106, 64-67.	0.2	1
216	Extraction and Quantification of Carbon Nanotubes in Biological Matrices with Application to Rat Lung Tissue. ACS Nano, 2013, 7, 8849-8856.	7.3	58

#	Article	IF	CITATIONS
217	Disruption of model cell membranes by carbon nanotubes. Carbon, 2013, 60, 67-75.	5.4	92
218	Characterization of atmospheric organic matter using size-exclusion chromatography with inline organic carbon detection. Atmospheric Environment, 2013, 68, 326-332.	1.9	14
219	Assessment of De Facto Wastewater Reuse across the U.S.: Trends between 1980 and 2008. Environmental Science & Technology, 2013, 47, 11099-11105.	4.6	123
220	Biological Response to Nano-Scale Titanium Dioxide (TiO ₂): Role of Particle Dose, Shape, and Retention. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 953-972.	1.1	64
221	Biological accumulation of engineered nanomaterials: a review of current knowledge. Environmental Sciences: Processes and Impacts, 2013, 15, 103-122.	1.7	118
222	Sorption of trace organics and engineered nanomaterials onto wetland plant material. Environmental Sciences: Processes and Impacts, 2013, 15, 267-274.	1.7	27
223	Characterization of aerosol emissions from wastewater aeration basins. Journal of the Air and Waste Management Association, 2013, 63, 20-26.	0.9	18
224	In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst. Water Research, 2013, 47, 1596-1603.	5.3	34
225	Titanium Dioxide-Based Hybrid Ion-Exchange Media for Simultaneous Removal of Arsenic and Nitrate. ACS Symposium Series, 2013, , 223-236.	0.5	8
226	Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity. Applied Catalysis B: Environmental, 2013, 136-137, 40-47.	10.8	152
227	Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research, 2013, 47, 4433-4450.	5.3	445
228	Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine. Water Research, 2013, 47, 1299-1307.	5.3	85
229	Nanomaterial Removal and Transformation During Biological Wastewater Treatment. Environmental Engineering Science, 2013, 30, 109-117.	0.8	104
230	Searching for Global Descriptors of Engineered Nanomaterial Fate and Transport in the Environment. Accounts of Chemical Research, 2013, 46, 844-853.	7.6	93
231	Transformation in Bulk and Trace Organics during Ozonation of Wastewater. Ozone: Science and Engineering, 2012, 34, 26-31.	1.4	16
232	Practical Studies of the Electrolysis and Volatilization of the Bromide from Drinking Water to Minimize Bromate Production by Ozonation. Ozone: Science and Engineering, 2012, 34, 269-279.	1.4	4
233	Character and Treatment of Organic Colloids in Challenging and Impacted Drinking Water Sources. Journal of Environmental Engineering, ASCE, 2012, 138, 393-401.	0.7	11
234	Formation and control of emerging C―and Nâ€ÐBPs in drinking water. Journal - American Water Works Association, 2012, 104, E582.	0.2	66

#	Article	IF	CITATIONS
235	Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples. Analytical and Bioanalytical Chemistry, 2012, 404, 2583-2595.	1.9	31
236	Modeling temperature and reaction time impacts on hematite nanoparticle size during forced hydrolysis of ferric chloride. Chemical Engineering Journal, 2012, 210, 357-362.	6.6	7
237	Nitrate Reduction in Water Using Commercial Titanium Dioxide Photocatalysts (P25, P90, and Hombikat) Tj ETQc	1 1 0.784 0.7	314 rgBT /〇 86
238	Nitrogen Origins and the Role of Ozonation in the Formation of Haloacetonitriles and Halonitromethanes in Chlorine Water Treatment. Environmental Science & Technology, 2012, 46, 12832-12838.	4.6	41
239	Express It in Numbers: Efforts to Quantify Engineered Nanoparticles in Environmental Matrices Advance. Environmental Science & Technology, 2012, 46, 12243-12245.	4.6	6
240	Detection of Carbon Nanotubes in Environmental Matrices Using Programmed Thermal Analysis. Environmental Science & Technology, 2012, 46, 12246-12253.	4.6	76
241	Adsorption of <i>N</i> -Nitrosodimethylamine Precursors by Powdered and Granular Activated Carbon. Environmental Science & Technology, 2012, 46, 12630-12639.	4.6	104
242	Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27, 1532.	1.6	111
243	Nanomaterial Transformation and Association with Fresh and Freeze-Dried Wastewater Activated Sludge: Implications for Testing Protocol and Environmental Fate. Environmental Science & Technology, 2012, 46, 7046-7053.	4.6	70
244	Fullerenes in Environmental Samples: C60 in Atmospheric Particulate Matter. Comprehensive Analytical Chemistry, 2012, , 291-303.	0.7	8
245	Distribution of Functionalized Gold Nanoparticles between Water and Lipid Bilayers as Model Cell Membranes. Environmental Science & Technology, 2012, 46, 1869-1876.	4.6	73
246	Role of Nanoparticle Surface Functionality in the Disruption of Model Cell Membranes. Langmuir, 2012, 28, 16318-16326.	1.6	135
247	GAC removal of organic nitrogen and other DBP precursors. Journal - American Water Works Association, 2012, 104, E406.	0.2	22
248	Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environmental Science & Technology, 2012, 46, 2242-2250.	4.6	1,747
249	Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1093.	1.6	95
250	Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). Journal of Analytical Atomic Spectrometry, 2012, 27, 1131.	1.6	235
251	Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials, 2012, 201-202, 16-22.	6.5	165
252	Functionalized nanoparticle interactions with polymeric membranes. Journal of Hazardous Materials, 2012, 211-212, 288-295.	6.5	59

#	Article	IF	CITATIONS
253	Solubility of nanoâ€zinc oxide in environmentally and biologically important matrices. Environmental Toxicology and Chemistry, 2012, 31, 93-99.	2.2	246
254	Fate of Sucralose During Wastewater Treatment. Environmental Engineering Science, 2011, 28, 325-331.	0.8	75
255	Octanol-water distribution of engineered nanomaterials. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 636-647.	0.9	45
256	Characterization and Liquid Chromatography-MS/MS Based Quantification of Hydroxylated Fullerenes. Analytical Chemistry, 2011, 83, 1777-1783.	3.2	46
257	Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring, 2011, 13, 1195.	2.1	345
258	Comparison of Different Methods for the Point of Zero Charge Determination of NiO. Industrial & amp; Engineering Chemistry Research, 2011, 50, 10017-10023.	1.8	338
259	Distribution of Fullerene Nanomaterials between Water and Model Biological Membranes. Langmuir, 2011, 27, 11899-11905.	1.6	49
260	Synthetic musk emissions from wastewater aeration basins. Water Research, 2011, 45, 1071-1078.	5.3	26
261	Occurrence and treatment of wastewater-derived organic nitrogen. Water Research, 2011, 45, 4641-4650.	5.3	58
262	Detection of fullerenes (C60 and C70) in commercial cosmetics. Environmental Pollution, 2011, 159, 1334-1342.	3.7	119
263	Water quality and yield from polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 13022-13031.	3.8	5
264	Capturing the lost phosphorus. Chemosphere, 2011, 84, 846-853.	4.2	397
265	Evaluation of extraction methods for quantification of aqueous fullerenes in urine. Analytical and Bioanalytical Chemistry, 2011, 399, 1631-1639.	1.9	23
266	Recovery and quality of water produced by commercial fuel cells. International Journal of Hydrogen Energy, 2011, 36, 4022-4028.	3.8	28
267	Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. TrAC - Trends in Analytical Chemistry, 2011, 30, 44-57.	5.8	44
268	Potential Removal and Release of Nanomaterials from Wastewater Treatment Plants. Proceedings of the Water Environment Federation, 2010, 2010, 899-905.	0.0	0
269	The Release of Nanosilver from Consumer Products Used in the Home. Journal of Environmental Quality, 2010, 39, 1875-1882.	1.0	428
270	Trace Organics in Arizona Surface and Wastewaters. ACS Symposium Series, 2010, , 81-117.	0.5	2

#	Article	IF	CITATIONS
271	The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons. Journal of Hazardous Materials, 2010, 183, 381-388.	6.5	52
272	Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biology and Toxicology, 2010, 26, 225-238.	2.4	178
273	Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV–vis spectroscopic and mass spectrometric detection. Chemosphere, 2010, 80, 334-339.	4.2	65
274	Urban Ethnohydrology: Cultural Knowledge of Water Quality and Water Management in a Desert City. Ecology and Society, 2010, 15, .	1.0	37
275	Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuousâ€flow photobioreactors. Environmental Technology (United Kingdom), 2010, 31, 523-532.	1.2	63
276	Biogenic Nanoscale Colloids in Wastewater Effluents. Environmental Science & Technology, 2010, 44, 8216-8222.	4.6	25
277	Solar photolysis kinetics of disinfection byproducts. Water Research, 2010, 44, 3401-3409.	5.3	77
278	Predicting disinfection by-product formation potential in water. Water Research, 2010, 44, 3755-3762.	5.3	169
279	Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Research, 2010, 44, 4105-4114.	5.3	243
280	Occurrence and removal of amino acids during drinking water treatment. Journal - American Water Works Association, 2009, 101, 101-115.	0.2	125
281	Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Science and Technology, 2009, 60, 135-143.	1.2	132
282	Engineered Nanomaterials as Emerging Contaminants in Water. , 2009, , 558-590.		3
283	Removal of arsenate and 17α-ethinyl estradiol (EE2) by iron (hydr)oxide modified activated carbon fibers. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 354-361.	0.9	44
284	Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon. Chemical Engineering Journal, 2009, 146, 237-243.	6.6	102
285	Development of a Group Contribution Method To Predict Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants. Environmental Science & Technology, 2009, 43, 6220-6227.	4.6	211
286	Impact of Wastewater Treatment Processes on Organic Carbon, Organic Nitrogen, and DBP Precursors in Effluent Organic Matter. Environmental Science & Technology, 2009, 43, 2911-2918.	4.6	220
287	Nitrosamine, Dimethylnitramine, and Chloropicrin Formation during Strong Base Anion-Exchange Treatment. Environmental Science & Technology, 2009, 43, 466-472.	4.6	53
288	Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. Toxicology in Vitro, 2009, 23, 955-962.	1.1	43

#	Article	IF	CITATIONS
289	Fate of effluent organic matter and DBP precursors in an effluent-dominated river: A case study of wastewater impact on downstream water quality. Water Research, 2009, 43, 1755-1765.	5.3	81
290	User-oriented batch reactor solutions to the homogeneous surface diffusion model for different activated carbon dosages. Water Research, 2009, 43, 1859-1866.	5.3	46
291	Formation of organic chloramines during water disinfection – chlorination versus chloramination. Water Research, 2009, 43, 2233-2239.	5.3	91
292	Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Research, 2009, 43, 3992-3998.	5.3	197
293	Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 2009, 43, 4249-4257.	5.3	508
294	Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants. Environmental Science & Technology, 2009, 43, 6757-6763.	4.6	703
295	Occurrence of Disinfection Byproducts in United States Wastewater Treatment Plant Effluents. Environmental Science & Technology, 2009, 43, 8320-8325.	4.6	319
296	Producing drinking water from hydrogen fuel cells. Journal of Water Supply: Research and Technology - AQUA, 2009, 58, 327.	0.6	19
297	Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide. Journal of Hazardous Materials, 2008, 152, 397-406.	6.5	65
298	An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers. Journal of Hazardous Materials, 2008, 156, 604-611.	6.5	47
299	Quantification of C ₆₀ fullerene concentrations in water. Environmental Toxicology and Chemistry, 2008, 27, 1852-1859.	2.2	95
300	Stability and Removal of Water Soluble CdTe Quantum Dots in Water. Environmental Science & Technology, 2008, 42, 321-325.	4.6	102
301	Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environmental Science & Technology, 2008, 42, 4133-4139.	4.6	1,502
302	Arsenate Removal by Nanostructured ZrO ₂ Spheres. Environmental Science & Technology, 2008, 42, 3786-3790.	4.6	123
303	Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research, 2008, 42, 551-556.	5.3	260
304	Stability of commercial metal oxide nanoparticles in water. Water Research, 2008, 42, 2204-2212.	5.3	519
305	Correlations between organic matter properties and DBP formation during chloramination. Water Research, 2008, 42, 2329-2339.	5.3	132
306	Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environmental Science & Technology, 2008, 42, 7025-7026.	4.6	75

#	Article	IF	CITATIONS
307	Recent Advances in Disinfection By-Product Formation, Occurrence, Control, Health Effects, and Regulations. ACS Symposium Series, 2008, , 2-19.	0.5	29
308	Fate and Transport of Wastewater-Derived Disinfection By-Products in Surface Waters. ACS Symposium Series, 2008, , 257-273.	0.5	6
309	Organic Nitrogen Occurrence and Characterization. ACS Symposium Series, 2008, , 274-288.	0.5	3
310	Arsenate Removal by Iron (Hydr)Oxide Modified Granulated Activated Carbon: Modeling Arsenate Breakthrough with the Pore Surface Diffusion Model. Separation Science and Technology, 2008, 43, 3154-3167.	1.3	21
311	Physicochemical Treatment of Three Chemotherapy Drugs: Irinotecan, Tamoxifen, and Cyclophosphamide. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	8
312	Tiny Particles Causing Big Concern. Water Environment Research, 2008, 80, 483-483.	1.3	0
313	Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Research, 2007, 41, 1193-1200.	5.3	229
314	Vanadium removal by metal (hydr)oxide adsorbents. Water Research, 2007, 41, 1596-1602.	5.3	280
315	Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis. Water Research, 2007, 41, 3097-3102.	5.3	62
316	Dissolved Organic Nitrogen as a Precursor for Chloroform, Dichloroacetonitrile,N-Nitrosodimethylamine, and Trichloronitromethane. Environmental Science & Technology, 2007, 41, 5485-5490.	4.6	249
317	Electron Pulse Radiolysis Determination of Hydroxyl Radical Rate Constants with Suwannee River Fulvic Acid and Other Dissolved Organic Matter Isolates. Environmental Science & Technology, 2007, 41, 4640-4646.	4.6	327
318	A Hybrid Sorbent Utilizing Nanoparticles of Hydrous Iron Oxide for Arsenic Removal from Drinking Water. Environmental Engineering Science, 2007, 24, 104-112.	0.8	127
319	Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination, 2007, 202, 16-23.	4.0	274
320	Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. Journal of Hazardous Materials, 2007, 147, 265-274.	6.5	232
321	Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2007, 123, 82-88.	4.0	125
322	Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Materialia, 2007, 56, 373-376.	2.6	95
323	Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation. Water Research, 2006, 40, 3767-3774.	5.3	149
324	Adaptive management using multiple barriers to control tastes and odors. Journal - American Water Works Association, 2006, 98, 113-126.	0.2	14

#	Article	IF	CITATIONS
325	Arsenic Adsorptive Media Technology Selection Strategies. Water Quality Research Journal of Canada, 2006, 41, 171-184.	1.2	39
326	Occurrence and removal of dissolved organic nitrogen in US water treatment plants. Journal - American Water Works Association, 2006, 98, 102-110.	0.2	69
327	Transformation of Molecular Weight Distributions of Dissolved Organic Carbon and UV-Absorbing Compounds at Full-Scale Wastewater-Treatment Plants. Water Environment Research, 2006, 78, 253-262.	1.3	14
328	Comparison of Dissolved-Organic-Carbon Residuals from Air- and Pure-Oxygen-Activated-Sludge Sequencing-Batch Reactors. Water Environment Research, 2006, 78, 321-329.	1.3	4
329	Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. Journal of Membrane Science, 2006, 270, 88-100.	4.1	408
330	Kinetics of MIB and Geosmin Oxidation during Ozonation. Ozone: Science and Engineering, 2006, 28, 277-286.	1.4	63
331	Character of Organic Matter in Soil-Aquifer Treatment Systems. Journal of Environmental Engineering, ASCE, 2006, 132, 1447-1458.	0.7	52
332	Adsorption of 3H-Labeled 17-Î ² Estradiol on Powdered Activated Carbon. Water, Air, and Soil Pollution, 2005, 166, 343-351.	1.1	32
333	Characteristics and Reactivity of Algae-Produced Dissolved Organic Carbon. Journal of Environmental Engineering, ASCE, 2005, 131, 1574-1582.	0.7	219
334	The Application of Rapid Small-Scale Column Tests in Iron-Based Packed Bed ArseniC Treatment Systems. ACS Symposium Series, 2005, , 268-283.	0.5	6
335	Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes. Environmental Science & Technology, 2005, 39, 6649-6663.	4.6	1,300
336	Dissolved Organic Nitrogen Measurement Using Dialysis Pretreatment. Environmental Science & Technology, 2005, 39, 879-884.	4.6	128
337	Rapid Small-Scale Column Tests for Arsenate Removal in Iron Oxide Packed Bed Columns. Journal of Environmental Engineering, ASCE, 2005, 131, 262-271.	0.7	100
338	Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Research, 2005, 39, 4899-4912.	5.3	114
339	Removal of 17β Estradiol and Fluoranthene by Nanofiltration and Ultrafiltration. Journal of Environmental Engineering, ASCE, 2004, 130, 1460-1467.	0.7	74
340	Biological and Physical Attenuation of Endocrine Disruptors and Pharmaceuticals: Implications for Water Reuse. Ground Water Monitoring and Remediation, 2004, 24, 108-118.	0.6	84
341	Oxidation of bisphenol A, 17?-estradiol, and 17?-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 2004, 19, 257-264.	2.1	112
342	Reactivity of natural organic matter with aqueous chlorine and bromine. Water Research, 2004, 38, 1502-1513.	5.3	445

#	Article	IF	CITATIONS
343	Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Research, 2004, 38, 4002-4012.	5.3	313
344	Dissolved organic matter in Arizona reservoirs: assessment of carbonaceous sources. Organic Geochemistry, 2004, 35, 831-843.	0.9	57
345	70 Use of molecular probe to detect taste/odor-causing cyanobacteria in the phoenix drinking water distribution system. Journal of Phycology, 2003, 39, 24-24.	1.0	0
346	Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry. Environmental Engineering Science, 2003, 20, 449-469.	0.8	760
347	Fluorescence Excitationâ ´`Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 2003, 37, 5701-5710.	4.6	4,542
348	Nitrate removal in zero-valent iron packed columns. Water Research, 2003, 37, 1818-1830.	5.3	236
349	Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 2003, 37, 2301-2310.	5.3	121
350	HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Research, 2003, 37, 3530-3537.	5.3	268
351	Reduction of Nitrate, Bromate, and Chlorate by Zero Valent Iron (FeO). Journal of Environmental Engineering, ASCE, 2003, 129, 10-16.	0.7	113
352	Canal wall brushing—a control measure for taste and odour problems in drinking water supplies in arid environments. Journal of Water Supply: Research and Technology - AQUA, 2003, 52, 545-554.	0.6	5
353	Assessment and Optimization of chemical and physicochemical Softening Processes. Journal - American Water Works Association, 2002, 94, 109-119.	0.2	17
354	Removal of 2-methylisoborneol and geosmin in surface water treatment plants in Arizona. Journal of Water Supply: Research and Technology - AQUA, 2002, 51, 183-198.	0.6	86
355	DOC and DBP precursors in western US watersheds and reservoirs. Journal - American Water Works Association, 2002, 94, 98-112.	0.2	28
356	Dissolved organic nitrogen in drinking water supplies: a review. Journal of Water Supply: Research and Technology - AQUA, 2002, 51, 415-448.	0.6	270
357	Fluorescence Analysis of a Standard Fulvic Acid and Tertiary Treated Wastewater. Journal of Environmental Quality, 2001, 30, 2037-2046.	1.0	111
358	Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 2001, 46, 38-48.	1.6	2,239
359	Applying DBP models to fullâ€scale plants. Journal - American Water Works Association, 2000, 92, 89-102.	0.2	31
360	ALGALâ€RELATED TASTES AND ODORS IN PHOENIX WATER SUPPLY: PRELIMINARY REPORT. Journal of Phycology, 2000, 36, 32-32.	1.0	0

#	Article	IF	CITATIONS
361	Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater. Waste Management, 2000, 20, 75-83.	3.7	47
362	Transformations in dissolved organic carbon through constructed wetlands. Water Research, 2000, 34, 1897-1911.	5.3	113
363	Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. Journal of Hydrology, 2000, 236, 202-222.	2.3	111
364	Removal of Nitrate from Groundwater by Cyanobacteria: Quantitative Assessment of Factors Influencing Nitrate Uptake. Applied and Environmental Microbiology, 2000, 66, 133-139.	1.4	89
365	Ozoneâ€induced changes in natural organic matter (nom) structure. Ozone: Science and Engineering, 1999, 21, 551-570.	1.4	57
366	Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Research, 1999, 33, 2265-2276.	5.3	398
367	Modeling Dissolved Ozone and Bromate Ion Formation in Ozone Contactors. Water, Air, and Soil Pollution, 1998, 108, 1-32.	1.1	14
368	Numerical kinetic models for bromide oxidation to bromine and bromate. Water Research, 1998, 32, 1687-1699.	5.3	38
369	Molecular Ozone and Radical Pathways of Bromate Formation during Ozonation. Journal of Environmental Engineering, ASCE, 1998, 124, 456-462.	0.7	43
370	NOM's role in bromine and bromate formation during ozonation. Journal - American Water Works Association, 1998, 90, 82-94.	0.2	64
371	Applications of Ozone Decomposition Models. Ozone: Science and Engineering, 1997, 19, 55-73.	1.4	63
372	Bromate minimization during ozonation. Journal - American Water Works Association, 1997, 89, 69-78.	0.2	78
373	Simplifying Bromate Formation Kinetic Analysis with a Linear Bromate Yield Concept. ACS Symposium Series, 1996, , 322-349.	0.5	2
374	Interactions Between Bromine and Natural Organic Matter. ACS Symposium Series, 1996, , 298-321.	0.5	8
375	Empirical modeling of bromate formation during ozonation of bromide-containing waters. Water Research, 1996, 30, 1161-1168.	5.3	74
376	Bromate Formation and Control During Water Ozonation. Environmental Technology (United) Tj ETQq0 0 0 rgBT	Qverlock	2 10 Tf 50 14
0.77	Alternative strategies for removing bromate. Journal - American Water Works Association, 1994, 86,	0.0	70

#	ARTICLE	IF	CITATIONS
379	Properties of Commercial Nanoparticles that Affect Their Removal During Water Treatment. , 0, , 69-90.		7
380	Nuclear magnetic resonance enables understanding of polydiallyldimethylammonium chloride composition and N-nitrosodimethylamine formation during chloramination. Environmental Science: Water Research and Technology, 0, , .	1.2	0
381	Utilizing Fluorescent Probes for the Detection of TiO ₂ Nanoparticles of Known Characteristics and Their Photocatalytic Activity in Drinking Waters. ACS ES&T Water, 0, , .	2.3	1