Jos Malda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6817610/publications.pdf

Version: 2024-02-01

21239 28736 15,074 131 57 119 citations h-index g-index papers 137 137 137 14413 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Unveiling the potential of melt electrowriting in regenerative dental medicine. Acta Biomaterialia, 2023, 156, 88-109.	4.1	18
2	Tissue-specific melt electrowritten polymeric scaffolds for coordinated regeneration of soft and hard periodontal tissues. Bioactive Materials, 2023, 19, 268-281.	8.6	28
3	The Complexity of Joint Regeneration: How an Advanced Implant could Fail by Its In Vivo Proven Bone Component. Journal of Trial and Error, 2022, 2, 7-25.	0.2	6
4	Dualâ€contrast computed tomography enables detection of equine posttraumatic osteoarthritis in vitro. Journal of Orthopaedic Research, 2022, 40, 703-711.	1.2	2
5	Innovations in craniofacial bone and periodontal tissue engineering – from electrospinning to converged biofabrication. International Materials Reviews, 2022, 67, 347-384.	9.4	23
6	Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair. Biofabrication, 2022, 14, 014106.	3.7	34
7	The clinical potential of articular cartilage-derived progenitor cells: a systematic review. Npj Regenerative Medicine, 2022, 7, 2.	2.5	24
8	Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication, 2022, 14, 034104.	3.7	26
9	Volumetric Bioprinting of Organoids and Optically Tuned Hydrogels to Build Liverâ€Like Metabolic Biofactories. Advanced Materials, 2022, 34, e2110054.	11.1	100
10	Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules, 2022, 23, 1350-1365.	2.6	29
11	Robust gelatin hydrogels for local sustained release of bupivacaine following spinal surgery. Acta Biomaterialia, 2022, 146, 145-158.	4.1	5
12	Platelet-Rich Plasma Does Not Inhibit Inflammation or Promote Regeneration in Human Osteoarthritic Chondrocytes <i>In Vitro</i> Despite Increased Proliferation. Cartilage, 2021, 13, 991S-1003S.	1.4	15
13	Evaluation of articular cartilage with quantitative MRI in an equine model of postâ€ŧraumatic osteoarthritis. Journal of Orthopaedic Research, 2021, 39, 63-73.	1.2	16
14	Hydrogel-Based Bioinks for Cell Electrowriting of Well-Organized Living Structures with Micrometer-Scale Resolution. Biomacromolecules, 2021, 22, 855-866.	2.6	54
15	Topographic features of nano-pores within the osteochondral interface and their effects on transport properties –a 3D imaging and modeling study. Journal of Biomechanics, 2021, 123, 110504.	0.9	4
16	Comparison of in vitro and in vivo Toxicity of Bupivacaine in Musculoskeletal Applications. Frontiers in Pain Research, 2021, 2, 723883.	0.9	4
17	A Highly Ordered, Nanostructured Fluorinated CaPâ€Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration. Advanced Healthcare Materials, 2021, 10, e2101152.	3.9	32
18	3Dâ€Printed Regenerative Magnesium Phosphate Implant Ensures Stability and Restoration of Hip Dysplasia. Advanced Healthcare Materials, 2021, 10, e2101051.	3.9	15

#	Article	IF	CITATIONS
19	Bioprinting of Human Liverâ€Derived Epithelial Organoids for Toxicity Studies. Macromolecular Bioscience, 2021, 21, e2100327.	2.1	22
20	The Importance of Interfaces in Multiâ€Material Biofabricated Tissue Structures. Advanced Healthcare Materials, 2021, 10, e2101021.	3.9	12
21	Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2021, 22, 11200.	1.8	8
22	High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Materials Today Bio, 2021, 12, 100162.	2.6	38
23	3D extrusion bioprinting. Nature Reviews Methods Primers, 2021, 1, .	11.8	127
24	Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connective Tissue Research, 2020, 61, 137-151.	1.1	78
25	Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Advanced Healthcare Materials, 2020, 9, e1900775.	3.9	24
26	Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Biofabrication, 2020, 12, 025014.	3.7	90
27	A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation. Advanced Intelligent Systems, 2020, 2, 1900105.	3.3	16
28	Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials, 2020, 261, 120302.	5.7	87
29	Rapid and cytocompatible cell-laden silk hydrogel formation <i>via</i> riboflavin-mediated crosslinking. Journal of Materials Chemistry B, 2020, 8, 9566-9575.	2.9	47
30	Melt electrowriting onto anatomically relevant biodegradable substrates: Resurfacing a diarthrodial joint. Materials and Design, 2020, 195, 109025.	3.3	39
31	Differential Production of Cartilage ECM in 3D Agarose Constructs by Equine Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells. International Journal of Molecular Sciences, 2020, 21, 7071.	1.8	11
32	Stable and Antibacterial Magnesium–Graphene Nanocomposite-Based Implants for Bone Repair. ACS Biomaterials Science and Engineering, 2020, 6, 6253-6262.	2.6	32
33	Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model. ACS Biomaterials Science and Engineering, 2020, 6, 1681-1689.	2.6	9
34	Impact of Endotoxins in Gelatine Hydrogels on Chondrogenic Differentiation and Inflammatory Cytokine Secretion In Vitro. International Journal of Molecular Sciences, 2020, 21, 8571.	1.8	14
35	A Theoretical and Experimental Study to Optimize Cell Differentiation in a Novel Intestinal Chip. Frontiers in Bioengineering and Biotechnology, 2020, 8, 763.	2.0	25
36	Importance of Timing of Platelet Lysate-Supplementation in Expanding or Redifferentiating Human Chondrocytes for Chondrogenesis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 804.	2.0	19

#	Article	IF	CITATIONS
37	Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly. European Polymer Journal, 2020, 141, 110099.	2.6	13
38	Innovative Tissueâ€Engineered Strategies for Osteochondral Defect Repair and Regeneration: Current Progress and Challenges. Advanced Healthcare Materials, 2020, 9, e2001008.	3.9	57
39	Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chemical Reviews, 2020, 120, 11028-11055.	23.0	552
40	Bone Morphogenetic Protein-9 Is a Potent Chondrogenic and Morphogenic Factor for Articular Cartilage Chondroprogenitors. Stem Cells and Development, 2020, 29, 882-894.	1.1	21
41	Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomaterialia, 2020, 113, 164-176.	4.1	77
42	From Shape to Function: The Next Step in Bioprinting. Advanced Materials, 2020, 32, e1906423.	11.1	298
43	Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity. Advanced Healthcare Materials, 2020, 9, e1901667.	3.9	96
44	A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulation. Advanced Intelligent Systems, 2020, 2, 2070031.	3.3	2
45	Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23752-23763.	4.0	79
46	Oneâ€Step Photoactivation of a Dualâ€Functionalized Bioink as Cell Carrier and Cartilageâ€Binding Glue for Chondral Regeneration. Advanced Healthcare Materials, 2020, 9, e1901792.	3.9	56
47	Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Regionâ€Dependent Porosity Gradients in an Equine Model. Advanced Healthcare Materials, 2020, 9, e1901807.	3.9	33
48	Bioprinting Neural Systems to Model Central Nervous System Diseases. Advanced Functional Materials, 2020, 30, 1910250.	7.8	38
49	Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance. Frontiers in Bioengineering and Biotechnology, 2020, 8, 617364.	2.0	28
50	Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures?. Trends in Biotechnology, 2020, 38, 1316-1328.	4.9	68
51	Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs. Advanced Healthcare Materials, 2019, 8, e1800418.	3.9	92
52	A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Advanced Healthcare Materials, 2019, 8, e1900979.	3.9	69
53	Volumetric Bioprinting of Complex Livingâ€√issue Constructs within Seconds. Advanced Materials, 2019, 31, e1904209.	11.1	286
54	Rethinking articular cartilage regeneration based on a 250-year-old statement. Nature Reviews Rheumatology, 2019, 15, 571-572.	3.5	44

#	Article	IF	Citations
55	Biofabrication: Volumetric Bioprinting of Complex Livingâ€Tissue Constructs within Seconds (Adv.) Tj ETQq1 I	0.784314	rgBJ /Overloc
56	Fabrication of Decellularized Cartilage-derived Matrix Scaffolds. Journal of Visualized Experiments, 2019, , .	0.2	6
57	Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration. Acta Biomaterialia, 2019, 95, 297-306.	4.1	89
58	Arthroscopic Determination of Cartilage Proteoglycan Content and Collagen Network Structure with Near-Infrared Spectroscopy. Annals of Biomedical Engineering, 2019, 47, 1815-1826.	1.3	32
59	Mimicking the Articular Joint with In Vitro Models. Trends in Biotechnology, 2019, 37, 1063-1077.	4.9	27
60	Visible Light Crossâ€Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth. Macromolecular Bioscience, 2019, 19, e1900098.	2.1	127
61	Building Blocks for Biofabricated Models. Advanced Healthcare Materials, 2019, 8, e1900326.	3.9	3
62	Organs by design. Current Opinion in Organ Transplantation, 2019, 24, 562-567.	0.8	7
63	A Stimuliâ€Responsive Nanocomposite for 3D Anisotropic Cellâ€Guidance and Magnetic Soft Robotics. Advanced Functional Materials, 2019, 29, 1804647.	7.8	126
64	Fabrication of Kidney Proximal Tubule Grafts Using Biofunctionalized Electrospun Polymer Scaffolds. Macromolecular Bioscience, 2019, 19, e1800412.	2.1	20
65	Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication, 2018, 10, 034101.	3.7	216
66	Nonâ€enzymatic crossâ€linking of collagen type II fibrils is tuned via osmolality switch. Journal of Orthopaedic Research, 2018, 36, 1929-1936.	1.2	3
67	Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Scientific Reports, 2018, 8, 1245.	1.6	116
68	Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers. Environmental Science and Technology Letters, 2018, 5, 80-85.	3.9	45
69	Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication, 2018, 10, 014102.	3.7	272
70	Outâ€ofâ€Plane 3Dâ€Printed Microfibers Improve the Shear Properties of Hydrogel Composites. Small, 2018, 14, 1702773.	5.2	53
71	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	4.9	465
72	Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels. Bioengineering, 2018, 5, 99.	1.6	26

#	Article	IF	CITATIONS
73	Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo. Scientific Reports, 2018, 8, 13409.	1.6	33
74	Extracellular Vesicles in Joint Disease and Therapy. Frontiers in Immunology, 2018, 9, 2575.	2.2	34
75	Multi-scale imaging techniques to investigate solute transport across articular cartilage. Journal of Biomechanics, 2018, 78, 10-20.	0.9	23
76	Melt Electrowriting Allows Tailored Microstructural and Mechanical Design of Scaffolds to Advance Functional Human Myocardial Tissue Formation. Advanced Functional Materials, 2018, 28, 1803151.	7.8	125
77	Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 65-76.	0.9	25
78	Chondrogenesis by bone marrowâ€derived mesenchymal stem cells grown in chondrocyteâ€conditioned medium for auricular reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2763-2773.	1.3	28
79	Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9, 015026.	3.7	85
80	Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering?. Biofabrication, 2017, 9, 013001.	3.7	78
81	Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. Lab on A Chip, 2017, 17, 905-916.	3.1	49
82	From intricate to integrated: Biofabrication of articulating joints. Journal of Orthopaedic Research, 2017, 35, 2089-2097.	1.2	35
83	Tissue Engineering: Melt Electrospinning Writing of Polyâ€Hydroxymethylglycolideâ€ <i>co</i> ‵â€Caprolactoneâ€Based Scaffolds for Cardiac Tissue Engineering (Adv. Healthcare Mater. 18/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	1
84	Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly($\langle i \rangle \hat{l} \mu \langle i \rangle$ -caprolactone) for MSC chondrogenesis. Biofabrication, 2017, 9, 044108.	3.7	119
85	Melt Electrospinning Writing of Polyâ€Hydroxymethylglycolideâ€ <i>co</i> â€Îµâ€Caprolactoneâ€Based Scaffolds for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700311.	3.9	144
86	Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model: A Challenging Issue. Tissue Engineering - Part C: Methods, 2017, 23, 804-814.	1.1	31
87	The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomaterialia, 2017, 61, 41-53.	4.1	247
88	Additive Biomanufacturing: An Advanced Approach for Periodontal Tissue Regeneration. Annals of Biomedical Engineering, 2017, 45, 12-22.	1.3	87
89	Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Cartilage, 2017, 8, 327-340.	1.4	90
90	Additive Manufacturing of Biomaterials, Tissues, and Organs. Annals of Biomedical Engineering, 2017, 45, 1-11.	1.3	301

#	Article	IF	Citations
91	Triblock Copolymers Based on ε-Caprolactone and Trimethylene Carbonate for the 3D Printing of Tissue Engineering Scaffolds. International Journal of Artificial Organs, 2017, 40, 176-184.	0.7	12
92	Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles. Journal of Extracellular Vesicles, 2016, 5, 31751.	5.5	28
93	A Step Towards Clinical Translation of Biofabrication. Trends in Biotechnology, 2016, 34, 356-357.	4.9	16
94	From the printer: Potential of three-dimensional printing for orthopaedicÂapplications. Journal of Orthopaedic Translation, 2016, 6, 42-49.	1.9	70
95	A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides. Biomacromolecules, 2016, 17, 2137-2147.	2.6	111
96	Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication, 2016, 8, 035003.	3.7	261
97	Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication, 2016, 8, 035004.	3.7	81
98	Accurate Measurements of the Skin Surface Area of the Healthy Auricle and Skin Deficiency in Microtia Patients. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e1146.	0.3	5
99	Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels. BMC Musculoskeletal Disorders, 2016, 17, 245.	0.8	13
100	Biofabrication: reappraising the definition of an evolving field. Biofabrication, 2016, 8, 013001.	3.7	523
101	Cartilage defect repair in horses: Current strategies and recent developments in regenerative medicine of the equine joint with emphasis on the surgical approach. Veterinary Journal, 2016, 214, 61-71.	0.6	19
102	Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends in Biotechnology, 2016, 34, 394-407.	4.9	599
103	Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering. Stem Cell Research and Therapy, 2016, 7, 19.	2.4	53
104	Musculoskeletal regeneration research network: A global initiative. Journal of Orthopaedic Translation, 2015, 3, 160-165.	1.9	1
105	Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications, 2015, 6, 6933.	5.8	567
106	Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. Journal of Materials Chemistry B, 2015, 3, 9067-9078.	2.9	56
107	Decellularized Cartilage-Derived Matrix as Substrate for Endochondral Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 694-703.	1.6	61
108	Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials, 2015, 37, 174-182.	5.7	153

#	Article	IF	Citations
109	Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs. PLoS ONE, 2014, 9, e113216.	1.1	124
110	Chondrocyte redifferentiation and construct mechanical property development in singleâ€component photocrosslinkable hydrogels. Journal of Biomedical Materials Research - Part A, 2014, 102, 2544-2553.	2.1	56
111	Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomaterialia, 2014, 10, 2602-2611.	4.1	123
112	Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells. Journal of Biomechanics, 2014, 47, 2122-2129.	0.9	35
113	A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 2014, 10, 214-223.	4.1	291
114	Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication, 2014, 6, 035020.	3.7	310
115	Development and characterisation of a new bioink for additive tissue manufacturing. Journal of Materials Chemistry B, 2014, 2, 2282.	2.9	182
116	25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 2013, 25, 5011-5028.	11.1	1,522
117	Gelatinâ€Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissueâ€Engineered Cartilage Constructs. Macromolecular Bioscience, 2013, 13, 551-561.	2.1	646
118	Extracellular matrix scaffolds for cartilage and bone regeneration. Trends in Biotechnology, 2013, 31, 169-176.	4.9	465
119	Current Trends in Cartilage Science. Cartilage, 2013, 4, 273-280.	1.4	1
120	Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass. PLoS ONE, 2013, 8, e57683.	1.1	106
121	Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012, 37, 1079-1104.	11.8	997
122	A Printable Photopolymerizable Thermosensitive p(HPMAmâ€lactate)â€PEG Hydrogel for Tissue Engineering. Advanced Functional Materials, 2011, 21, 1833-1842.	7.8	147
123	Localization of the Potential Zonal Marker Clusterin in Native Cartilage and in Tissue-Engineered Constructs. Tissue Engineering - Part A, 2010, 16, 897-904.	1.6	21
124	Supply of Nutrients to Cells in Engineered Tissues. Biotechnology and Genetic Engineering Reviews, 2009, 26, 163-178.	2.4	149
125	Tissue Engineering of Articular Cartilage with Biomimetic Zones. Tissue Engineering - Part B: Reviews, 2009, 15, 143-157.	2.5	273
126	Cell nutrition. , 2008, , 327-362.		6

#	Article	IF	CITATIONS
127	Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 2006, 93, 332-343.	1.7	360
128	Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnology and Bioengineering, 2005, 91, 607-615.	1.7	155
129	Cartilage Tissue Engineering: Controversy in the Effect of Oxygen. Critical Reviews in Biotechnology, 2003, 23, 175-194.	5.1	109
130	Cartilage Tissue Engineering: Controversy in the Effect of Oxygen. Critical Reviews in Biotechnology, 2003, 23, 175-194.	5.1	68
131	Hydrodynamics and mass transfer in a tubular airlift photobioreactor. Journal of Applied Phycology, 2002, 14, 169-184.	1.5	67