
Barry R Sinervo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6817339/publications.pdf Version: 2024-02-01

RADDY P SINEDVO

#	Article	IF	CITATIONS
1	Erosion of Lizard Diversity by Climate Change and Altered Thermal Niches. Science, 2010, 328, 894-899.	6.0	1,430
2	Density cycles and an offspring quantity and quality game driven by natural selection. Nature, 2000, 406, 985-988.	13.7	376
3	THE EVOLUTION OF MATERNAL INVESTMENT IN LIZARDS: AN EXPERIMENTAL AND COMPARATIVE ANALYSIS OF EGG SIZE AND ITS EFFECTS ON OFFSPRING PERFORMANCE. Evolution; International Journal of Organic Evolution, 1990, 44, 279-294.	1.1	343
4	Testosterone, Endurance, and Darwinian Fitness: Natural and Sexual Selection on the Physiological Bases of Alternative Male Behaviors in Side-Blotched Lizards. Hormones and Behavior, 2000, 38, 222-233.	1.0	313
5	Allometric Engineering: A Causal Analysis of Natural Selection on Offspring Size. Science, 1992, 258, 1927-1930.	6.0	307
6	The Effects of Morphology and Perch Diameter on Sprint Performance of <i>Anolis</i> Lizards. Journal of Experimental Biology, 1989, 145, 23-30.	0.8	268
7	The complex drivers of thermal acclimation and breadth in ectotherms. Ecology Letters, 2018, 21, 1425-1439.	3.0	192
8	Thermal sensitivity of growth rate in hatchling Sceloporus lizards: environmental, behavioral and genetic aspects. Oecologia, 1989, 78, 411-419.	0.9	181
9	COSTS OF REPRODUCTION IN THE WILD: PATH ANALYSIS OF NATURAL SELECTION AND EXPERIMENTAL TESTS OF CAUSATION. Evolution; International Journal of Organic Evolution, 1996, 50, 1299-1313.	1.1	175
10	Field Physiology: Physiological Insights from Animals in Nature. Annual Review of Physiology, 2004, 66, 209-238.	5.6	174
11	Hormonal and physiological control of clutch size, egg size, and egg shape in side-blotched lizards (Uta stansburiana): Constraints on the evolution of lizard life histories. The Journal of Experimental Zoology, 1991, 257, 252-264.	1.4	168
12	DEVELOPMENTAL CONSEQUENCES OF AN EVOLUTIONARY CHANGE IN EGG SIZE: AN EXPERIMENTAL TEST. Evolution; International Journal of Organic Evolution, 1988, 42, 885-899.	1.1	163
13	INTERACTIVE EFFECTS OF OFFSPRING SIZE AND TIMING OF REPRODUCTION ON OFFSPRING REPRODUCTION: EXPERIMENTAL, MATERNAL, AND QUANTITATIVE GENETIC ASPECTS. Evolution; International Journal of Organic Evolution, 1996, 50, 1314-1327.	1.1	159
14	Mechanistic and Selective Causes of Life History Trade-Offs and Plasticity. Oikos, 1998, 83, 432.	1.2	159
15	Self-recognition, color signals, and cycles of greenbeard mutualism and altruism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7372-7377.	3.3	154
16	Walking the Tight Rope: Arboreal Sprint Performance Among Sceloporus Occidentalis Lizard Populations. Ecology, 1991, 72, 1225-1233.	1.5	151
17	SOCIAL CAUSES OF CORRELATIONAL SELECTION AND THE RESOLUTION OF A HERITABLE THROAT COLOR POLYMORPHISM IN A LIZARD. Evolution; International Journal of Organic Evolution, 2001, 55, 2040-2052.	1.1	151
18	Growth Plasticity and Thermal Opportunity in Sceloporus Lizards. Ecology, 1994, 75, 776-790.	1.5	147

#	Article	IF	CITATIONS
19	Morphs, Dispersal Behavior, Genetic Similarity, and the Evolution of Cooperation. Science, 2003, 300, 1949-1951.	6.0	144
20	REPRODUCTIVE BURDEN, LOCOMOTOR PERFORMANCE, AND THE COST OF REPRODUCTION IN FREE RANGING LIZARDS. Evolution; International Journal of Organic Evolution, 2000, 54, 1386-1395.	1.1	141
21	Effects of Steroid Hormone Interaction on Activity and Home-Range Size of Male Lizards. Hormones and Behavior, 1994, 28, 273-287.	1.0	140
22	Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4254-4259.	3.3	136
23	The Evolution of Maternal Investment in Lizards: An Experimental and Comparative Analysis of Egg Size and Its Effects on Offspring Performance. Evolution; International Journal of Organic Evolution, 1990, 44, 279.	1.1	130
24	The Developmental, Physiological, Neural, and Genetical Causes and Consequences of Frequency-Dependent Selection in the Wild. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 581-610.	3.8	130
25	Cooling requirements fueled the collapse of a desert bird community from climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21609-21615.	3.3	122
26	Decreased Sprint Speed as A Cost of Reproduction in the Lizard <i>Sceloporus Occidentals:</i> Variation Among Populations. Journal of Experimental Biology, 1991, 155, 323-336.	0.8	122
27	EXPERIMENTAL EXCURSIONS ON ADAPTIVE LANDSCAPES: DENSITY-DEPENDENT SELECTION ON EGG SIZE. Evolution; International Journal of Organic Evolution, 2000, 54, 1396-1403.	1.1	121
28	Within-clutch variation in offspring sex determined by differences in sire body size: cryptic mate choice in the wild. Journal of Evolutionary Biology, 2003, 17, 464-470.	0.8	114
29	Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia, 1990, 83, 228-237.	0.9	113
30	An experimental test of the ideal despotic distribution. Journal of Animal Ecology, 2002, 71, 513-523.	1.3	108
31	CONDITION, GENOTYPE-BY-ENVIRONMENT INTERACTION, AND CORRELATIONAL SELECTION IN LIZARD LIFE-HISTORY MORPHS. Evolution; International Journal of Organic Evolution, 2001, 55, 2053-2069.	1.1	107
32	Mate choice games, context-dependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana. Behavioral Ecology and Sociobiology, 2001, 49, 176-186.	0.6	104
33	Effects of Corticosterone on Activity and Home-Range Size of Free-Ranging Male Lizards. Hormones and Behavior, 1994, 28, 53-65.	1.0	101
34	Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 2010, 19, 3250-3270.	2.0	95
35	Models of Densityâ€Dependent Genic Selection and a New Rockâ€Paperâ€Scissors Social System. American Naturalist, 2007, 170, 663-680.	1.0	94
36	Mechanistic Analysis of Natural Selection and a Refinement of Lack's and Williams's Principles. American Naturalist, 1999, 154, S26-S42.	1.0	91

#	Article	IF	CITATIONS
37	Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nature Communications, 2019, 10, 4077.	5.8	89
38	The Genetic Basis of Adaptation following Plastic Changes in Coloration in a Novel Environment. Current Biology, 2018, 28, 2970-2977.e7.	1.8	83
39	Gonadotropin Hormone Modulation of Testosterone, Immune Function, Performance, and Behavioral Tradeâ€Offs among Male Morphs of the Lizard <i>Uta stansburiana</i> . American Naturalist, 2008, 171, 339-357.	1.0	82
40	Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE, 2019, 14, e0213368.	1.1	78
41	Uncoupling direct and indirect components of female choice in the wild. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14897-14902.	3.3	77
42	INTRALOCUS SEXUAL CONFLICT OVER IMMUNE DEFENSE, GENDER LOAD, AND SEX-SPECIFIC SIGNALING IN A NATURAL LIZARD POPULATION. Evolution; International Journal of Organic Evolution, 2009, 63, 3124-3135.	1.1	76
43	Genetic and Maternal Determinants of Effective Dispersal: The Effect of Sire Genotype and Size at Birth in Sideâ€Blotched Lizards. American Naturalist, 2006, 168, 88-99.	1.0	75
44	Costs of Reproduction in the Wild: Path Analysis of Natural Selection and Experimental Tests of Causation. Evolution; International Journal of Organic Evolution, 1996, 50, 1299.	1.1	74
45	ALTERNATIVE MATING STRATEGIES AND THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE SIDE-BLOTCHED LIZARD, UTA STANSBURIANA: A POPULATION-LEVEL COMPARATIVE ANALYSIS. Evolution; International Journal of Organic Evolution, 2010, 64, 79-96.	1.1	73
46	The Effect of Offspring Size on Physiology and Life History. BioScience, 1993, 43, 210-218.	2.2	72
47	Developmental Consequences of an Evolutionary Change in Egg Size: An Experimental Test. Evolution; International Journal of Organic Evolution, 1988, 42, 885.	1.1	71
48	Interactive Effects of Offspring Size and Timing of Reproduction on Offspring Reproduction: Experimental, Maternal, and Quantitative Genetic Aspects. Evolution; International Journal of Organic Evolution, 1996, 50, 1314.	1.1	69
49	The ontogeny of territoriality during maturation. Oecologia, 2002, 132, 468-477.	0.9	63
50	Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Journal of Thermal Biology, 2018, 73, 50-60.	1.1	63
51	Corticosterone, locomotor performance, and metabolism in side-blotched lizards (Uta stansburiana). Hormones and Behavior, 2007, 51, 548-554.	1.0	61
52	Climate change, thermal niches, extinction risk and maternalâ€effect rescue of toadâ€headed lizards, <i>Phrynocephalus</i> , in thermal extremes of the Arabian Peninsula to the Qinghai—Tibetan Plateau. Integrative Zoology, 2018, 13, 450-470.	1.3	59
53	Sexual selection and alternative mating behaviours generate demographic stochasticity in small populations. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 157-164.	1.2	56
54	Sex-biased dispersal in a polygynous lizard, Uta stansburiana. Animal Behaviour, 1994, 47, 227-229.	0.8	55

#	Article	IF	CITATIONS
55	Title is missing!. Genetica, 2001, 112/113, 417-434.	0.5	55
56	Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography, 2014, 37, 679-688.	2.1	55
57	Dorsal cortex volume in male side-blotched lizards, Uta stansburiana, is associated with different space use strategies. Animal Behaviour, 2009, 78, 91-96.	0.8	53
58	Physiological Epistasis, Ontogenetic Conflict and Natural Selection on Physiology and Life History. Integrative and Comparative Biology, 2003, 43, 419-430.	0.9	52
59	Spatial Scale and Temporal Component of Selection in Sideâ€Blotched Lizards. American Naturalist, 2004, 163, 726-734.	1.0	51
60	Evidence of maternal effects on temperature preference in sideâ€blotched lizards: implications for evolutionary response to climate change. Ecology and Evolution, 2013, 3, 1977-1991.	0.8	51
61	Thermoregulation of two sympatric species of horned lizards in the Chihuahuan Desert and their local extinction risk. Journal of Thermal Biology, 2015, 48, 1-10.	1.1	50
62	Thermal biology of genus Liolaemus: A phylogenetic approach reveals advantages of the genus to survive climate change. Journal of Thermal Biology, 2012, 37, 579-586.	1.1	48
63	Convergent evolution of kin-based sociality in a lizard. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1507-1514.	1.2	46
64	Iridophores and Not Carotenoids Account for Chromatic Variation of Carotenoid-Based Coloration in Common Lizards (<i>Lacerta vivipara</i>). American Naturalist, 2013, 181, 396-409.	1.0	46
65	Adaptive significance of maternal induction of densityâ€dependent phenotypes. Oikos, 2007, 116, 650-661.	1.2	45
66	SOCIALLY MEDIATED SPECIATION. Evolution; International Journal of Organic Evolution, 2003, 57, 154-158.	1.1	43
67	The Effects of Habitat, Time of Hatching, and Body Size on the Dispersal of Hatchling Uta stansburiana. Journal of Herpetology, 1994, 28, 485.	0.2	41
68	Discrete genetic variation in mate choice and a condition-dependent preference function in the side-blotched lizard: implications for the formation and maintenance of coadapted gene complexes. Behavioral Ecology, 2007, 18, 304-310.	1.0	41
69	Female choice for optimal combinations of multiple male display traits increases offspring survival. Behavioral Ecology, 2009, 20, 993-999.	1.0	39
70	Chemical composition of femoral secretions of oviparous and viviparous types of male common lizards Lacerta vivipara. Biochemical Systematics and Ecology, 2008, 36, 539-544.	0.6	38
71	Male aggression varies with throat color in 2 distinct populations of the mesquite lizard. Behavioral Ecology, 2013, 24, 968-981.	1.0	37
72	Female Preference for Sympatric vs. Allopatric Male Throat Color Morphs in the Mesquite Lizard (Sceloporus grammicus) Species Complex. PLoS ONE, 2014, 9, e93197.	1.1	36

#	Article	IF	CITATIONS
73	Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biological Conservation, 2017, 206, 151-160.	1.9	36
74	Fine with heat, problems with water: microclimate alters water loss in a thermally adapted insular lizard. Oikos, 2017, 126, 447-457.	1.2	34
75	Water loss and temperature interact to compound amphibian vulnerability to climate change. Global Change Biology, 2020, 26, 4868-4879.	4.2	34
76	Climate and habitat interact to shape the thermal reaction norms of breeding phenology across lizard populations. Journal of Animal Ecology, 2016, 85, 457-466.	1.3	33
77	Reduction in baseline corticosterone secretion correlates with climate warming and drying across wild lizard populations. Journal of Animal Ecology, 2018, 87, 1331-1341.	1.3	33
78	Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes, 2019, 10, 646.	1.0	33
79	Maturational costs of reproduction due to clutch size and ontogenetic conflict as revealed in the invisible fraction. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 629-638.	1.2	31
80	Thermal physiology of Amazonian lizards (Reptilia: Squamata). PLoS ONE, 2018, 13, e0192834.	1.1	31
81	Frequency and Density-Dependent Selection on Life-History Strategies – A Field Experiment. PLoS ONE, 2008, 3, e1687.	1.1	30
82	Thermal relationships between body temperature and environment conditions set upper distributional limits on oviparous species. Journal of Thermal Biology, 2011, 36, 527-534.	1.1	29
83	Thermoregulatory behavior and high thermal preference buffer impact of climate change in a Namib Desert lizard. Ecosphere, 2017, 8, e02033.	1.0	29
84	Direct Fitness Correlates and Thermal Consequences of Facultative Aggregation in a Desert Lizard. PLoS ONE, 2012, 7, e40866.	1.1	27
85	Time of activity is a better predictor of the distribution of a tropical lizard than pure environmental temperatures. Oikos, 2020, 129, 953-963.	1.2	27
86	MATERNAL ADJUSTMENT OF EGG SIZE ORGANIZES ALTERNATIVE ESCAPE BEHAVIORS, PROMOTING ADAPTIVE PHENOTYPIC INTEGRATION. Evolution; International Journal of Organic Evolution, 2010, 64, 1607-1621.	1.1	26
87	CORRELATIONAL SELECTION ON LAY DATE AND LIFE-HISTORY TRAITS: EXPERIMENTAL MANIPULATIONS OF TERRITORY AND NEST SITE QUALITY. Evolution; International Journal of Organic Evolution, 2007, 61, 1071-1083.	1.1	23
88	Frequency-dependent reproductive success in female common lizards: a real-life hawk–dove–bully game?. Oecologia, 2010, 162, 49-58.	0.9	23
89	Behavioral and physiological polymorphism in males of the austral lizard Liolaemus sarmientoi. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 219-230.	0.7	23
90	The Cellular Basis of Polymorphic Coloration in Common Side-Blotched Lizards, <i>Uta stansburiana</i> . Herpetologica, 2015, 71, 125-135.	0.2	22

#	Article	IF	CITATIONS
91	Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs. Contemporary Issues in Genetics and Evolution, 2001, , 417-434.	0.9	20
92	Contemporary Drought and Future Effects of Climate Change on the Endangered Blunt-Nosed Leopard Lizard, Gambelia sila. PLoS ONE, 2016, 11, e0154838.	1.1	20
93	The importance of a good neighborhood: dispersal decisions in juvenile common lizards are based on social environment. Behavioral Ecology, 2012, 23, 1059-1067.	1.0	18
94	Does Thermal Ecology Influence Dynamics of Side-Blotched Lizards and Their Micro-Parasites?. Integrative and Comparative Biology, 2014, 54, 108-117.	0.9	18
95	Phylogeny of the reptilian <i>Eimeria</i> : are <i>Choleoeimeria</i> and <i>Acroeimeria</i> valid generic names?. Zoologica Scripta, 2015, 44, 684-692.	0.7	18
96	Rapid Formation of Reproductive Isolation between Two Populations of Side-Blotched Lizards, Uta stansburiana. Copeia, 2012, 2012, 593-602.	1.4	17
97	Are ectotherm brains vulnerable to global warming?. Trends in Ecology and Evolution, 2021, 36, 691-699.	4.2	17
98	Harnessing cross-border resources to confront climate change. Environmental Science and Policy, 2018, 87, 128-132.	2.4	16
99	How will climate change impact fossorial lizard species? Two examples in the Baja California Peninsula. Journal of Thermal Biology, 2021, 95, 102811.	1.1	16
100	The evolution of different maternal investment strategies in two closely related desert vertebrates. Ecology and Evolution, 2017, 7, 3177-3189.	0.8	15
101	Habitat restoration opportunities, climatic niche contraction, and conservation biogeography in California's San Joaquin Desert. PLoS ONE, 2019, 14, e0210766.	1.1	15
102	EXPERIMENTAL EXCURSIONS ON ADAPTIVE LANDSCAPES: DENSITY-DEPENDENT SELECTION ON EGG SIZE. Evolution; International Journal of Organic Evolution, 2000, 54, 1396.	1.1	14
103	Alternative reproductive tactics in reptiles. , 2008, , 332-342.		14
104	REPRODUCTIVE BURDEN, LOCOMOTOR PERFORMANCE, AND THE COST OF REPRODUCTION IN FREE RANGING LIZARDS. Evolution; International Journal of Organic Evolution, 2000, 54, 1386.	1.1	13
105	Dynamics of haplogroup frequencies and survival rates in a contact zone of two mtDNA lineages of the lizard Lacerta vivipara. Ecography, 2011, 34, 436-447.	2.1	13
106	Frequency-dependent sexual selection with respect to progeny survival is consistent with predictions from rock-paper-scissors dynamics in the European common lizard. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	13
107	Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii). Journal of Thermal Biology, 2015, 49-50, 119-126.	1.1	13
108	MATERNAL ADJUSTMENT OF EGG SIZE ORGANIZES ALTERNATIVE ESCAPE BEHAVIORS, PROMOTING ADAPTIVE PHENOTYPIC INTEGRATION. Evolution; International Journal of Organic Evolution, 2010, 64, 1607-21.	1.1	13

#	Article	IF	CITATIONS
109	CONDITION, GENOTYPE-BY-ENVIRONMENT INTERACTION, AND CORRELATIONAL SELECTION IN LIZARD LIFE-HISTORY MORPHS. Evolution; International Journal of Organic Evolution, 2001, 55, 2053.	1.1	12
110	Quantum structure in competing lizard communities. Ecological Modelling, 2014, 281, 38-51.	1.2	12
111	Evolutionary games, climate and the generation of diversity. PLoS ONE, 2017, 12, e0184052.	1.1	12
112	Multiyear Home-Range Ecology of Common Side-blotched Lizards in Eastern Oregon with Additional Analysis of Geographic Variation in Home-range Size. Herpetological Monographs, 2011, 25, 52-75.	1.1	11
113	Phylogenetic analyses reveal that Schellackia parasites (Apicomplexa) detected in American lizards are closely related to the genus Lankesterella: is the range of Schellackia restricted toÂthe Old World?. Parasites and Vectors, 2017, 10, 470.	1.0	11
114	SOCIAL CAUSES OF CORRELATIONAL SELECTION AND THE RESOLUTION OF A HERITABLE THROAT COLOR POLYMORPHISM IN A LIZARD. Evolution; International Journal of Organic Evolution, 2001, 55, 2040.	1.1	10
115	Volcanic ash from Puyehue-Cordón Caulle eruptions affects running performance and body condition of <i>Phymaturus</i> lizards in Patagonia, Argentina. Biological Journal of the Linnean Society, 2016, 118, 842-851.	0.7	10
116	Environmental experiences influence cortical volume in territorial and nonterritorial side-blotched lizards, Uta stansburiana. Animal Behaviour, 2016, 115, 11-18.	0.8	10
117	Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae [*] . Evolution; International Journal of Organic Evolution, 2021, 75, 2348-2370.	1.1	10
118	Genital morphology associated with mating strategy in the polymorphic lizard, Uta stansburiana. Journal of Morphology, 2019, 280, 184-192.	0.6	9
119	A less data demanding ecophysiological niche modeling approach for mammals with comparison to conventional correlative niche modeling. Ecological Modelling, 2021, 457, 109687.	1.2	8
120	Habitat thermal quality for Gopherus evgoodei in tropical deciduous forest and consequences of habitat modification by buffelgrass. Journal of Thermal Biology, 2022, 104, 103192.	1.1	8
121	Female Reproductive Investment in the Mesquite Lizard (<i>Sceloporus grammicus</i>) Species Complex (Squamata: Phrynosomatidae). Southwestern Naturalist, 2013, 58, 335-343.	0.1	7
122	Multiple color patches and parasites in Sceloporus occidentalis: differential relationships by sex and infection. Environmental Epigenetics, 2018, 64, 703-711.	0.9	5
123	Integration of Genotype, Physiological Performance, and Survival in a Lizard (<i>Uta stansburiana</i>) with Alternative Mating Strategies. Physiological and Biochemical Zoology, 2019, 92, 303-315.	0.6	5
124	Integrating climate, ecophysiology, and forest cover to estimate the vulnerability of sloths to climate change. Journal of Mammalogy, 2022, 103, 755-766.	0.6	5
125	The roles of plasticity versus dominance in maintaining polymorphism in mating strategies. Scientific Reports, 2017, 7, 15939.	1.6	4
126	Increased Testosterone Decreases Medial Cortical Volume and Neurogenesis in Territorial Side-Blotched Lizards (Uta stansburiana). Frontiers in Neuroscience, 2017, 11, 97.	1.4	4

#	Article	IF	CITATIONS
127	Parental response to intruder females altered by ornamentation and mate quality in a biparental fish. Behavioral Ecology, 2018, 29, 701-710.	1.0	4
128	An integrative approach to elucidate the taxonomic status of five species ofPhymaturusGravenhorst, 1837 (Squamata: Liolaemidae) from northwestern Patagonia, Argentina. Zoological Journal of the Linnean Society, 2019, 185, 268-282.	1.0	4
129	Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia. Natural and Social Sciences of Patagonia, 2020, , 373-405.	0.2	4
130	Epistatic social and endocrine networks and the evolution of life history trade-offs and plasticity. , 2011, , 329-348.		4
131	Aadaptive significance of maternal induction of density-dependent phenotypes. Oikos, 2007, 116, 650-661.	1.2	3
132	Social Games and Genic Selection Drive Mammalian Mating System Evolution and Speciation. American Naturalist, 2020, 195, 247-274.	1.0	3
133	11. Selection in Local Neighborhoods, the Social Environment, and Ecology of Alternative Strategies. , 2002, , 191-226.		2
134	Hormones and Behavior of Reptiles. , 2011, , 215-246.		2
135	Quantum probabilities in competing lizard communities. Nature Precedings, 2012, , .	0.1	2
136	The firewall between Cerrado and Amazonia: Interaction of temperature and fire govern seed recruitment in a Neotropical savanna. Journal of Vegetation Science, 2021, 32, .	1.1	2
137	Relaxed predation selection on rare morphs of <i>Ensatina</i> salamanders (Caudata: Plethodontidae) promotes a polymorphic population in a novel dune sand habitat. Biological Journal of the Linnean Society, 2021, 132, 643-654.	0.7	1
138	Regional Networks of Biological Field Stations to Study Climate Change. BioScience, 2021, 71, 874-882.	2.2	1
139	Different metrics of thermal acclimation yield similar effects of latitude, acclimation duration, and body mass on acclimation capacities. Global Change Biology, 2019, 25, e3-e4.	4.2	0
140	Hormones and Behavior of Reptiles. , 2011, , 215-246.		0
141	Comparative Oology: <i>Egg Incubation</i> . Its Effects on Embryonic Development in Birds and Reptiles. D. Charles Deeming and Mark W. J. Ferguson, Eds. Cambridge University Press, New York, 1992.	6.0	Ο