Kashyap A Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6817167/publications.pdf Version: 2024-02-01

Κλομγλό Δ Όλτει

#	Article	IF	CITATIONS
1	Precision diabetes: learning from monogenic diabetes. Diabetologia, 2017, 60, 769-777.	2.9	237
2	A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults. Diabetes Care, 2016, 39, 337-344.	4.3	231
3	Prospective functional classification of all possible missense variants in PPARG. Nature Genetics, 2016, 48, 1570-1575.	9.4	210
4	Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting. American Journal of Human Genetics, 2019, 104, 275-286.	2.6	158
5	Type 1 Diabetes Genetic Risk Score: A Novel Tool to Discriminate Monogenic and Type 1 Diabetes. Diabetes, 2016, 65, 2094-2099.	0.3	146
6	Type 2 Diabetes and COVID-19–Related Mortality in the Critical Care Setting: A National Cohort Study in England, March–July 2020. Diabetes Care, 2021, 44, 50-57.	4.3	139
7	The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications, 2014, 5, 4535.	5.8	131
8	Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes and Endocrinology,the, 2018, 6, 637-646.	5.5	120
9	Metformin selectively targets redox control of complex I energy transduction. Redox Biology, 2018, 14, 187-197.	3.9	115
10	Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia, 2020, 63, 1258-1267.	2.9	98
11	Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nature Communications, 2017, 8, 888.	5.8	95
12	Cellular Responses to the Metal-Binding Properties of Metformin. Diabetes, 2012, 61, 1423-1433.	0.3	85
13	Glucose-6-Phosphate–Mediated Activation of Liver Glycogen Synthase Plays a Key Role in Hepatic Glycogen Synthesis. Diabetes, 2013, 62, 4070-4082.	0.3	78
14	Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia, 2016, 59, 1162-1166.	2.9	68
15	A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia, 2018, 61, 2520-2527.	2.9	65
16	The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes. Biochemical Journal, 2012, 444, 503-514.	1.7	60
17	YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. Journal of Clinical Investigation, 2020, 130, 6338-6353.	3.9	58
18	The Common p.R114W <i>HNF4A</i> Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. Diabetes, 2016, 65, 3212-3217.	0.3	46

KASHYAP A PATEL

#	Article	IF	CITATIONS
19	Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress. Diabetes, 2021, 70, 1006-1018.	0.3	37
20	Syndromic Monogenic Diabetes Genes Should Be Tested in Patients With a Clinical Suspicion of Maturity-Onset Diabetes of the Young. Diabetes, 2022, 71, 530-537.	0.3	35
21	A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes. Diabetologia, 2018, 61, 862-869.	2.9	33
22	Prediction algorithms: pitfalls in interpreting genetic variants of autosomal dominant monogenic diabetes. Journal of Clinical Investigation, 2019, 130, 14-16.	3.9	27
23	Evaluation of Evidence for Pathogenicity Demonstrates That <i>BLK</i> , <i>KLF11</i> , and <i>PAX4</i> Should Not Be Included in Diagnostic Testing for MODY. Diabetes, 2022, 71, 1128-1136.	0.3	27
24	Type 1 diabetes genetic risk score is discriminative of diabetes in non-Europeans: evidence from a study in India. Scientific Reports, 2020, 10, 9450.	1.6	25
25	Type 1 diabetes can present before the age of 6Âmonths and is characterised by autoimmunity and rapid loss of beta cells. Diabetologia, 2020, 63, 2605-2615.	2.9	24
26	Long-term Follow-up of Glycemic and Neurological Outcomes in an International Series of Patients With Sulfonylurea-Treated <i>ABCC8</i> Permanent Neonatal Diabetes. Diabetes Care, 2021, 44, 35-42.	4.3	24
27	Trisomy 21 Is a Cause of Permanent Neonatal Diabetes That Is Autoimmune but Not HLA Associated. Diabetes, 2019, 68, 1528-1535.	0.3	22
28	PLIN1 Haploinsufficiency Is Not Associated With Lipodystrophy. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3225-3230.	1.8	19
29	Zinc Transporter 8 Autoantibodies (ZnT8A) and a Type 1 Diabetes Genetic Risk Score Can Exclude Individuals With Type 1 Diabetes From Inappropriate Genetic Testing for Monogenic Diabetes. Diabetes Care, 2019, 42, e16-e17.	4.3	19
30	Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors. Diabetologia, 2016, 59, 1463-1473.	2.9	18
31	SavvyCNV: Genome-wide CNV calling from off-targetÂreads. PLoS Computational Biology, 2022, 18, e1009940.	1.5	18
32	The Common <i>HNF1A</i> Variant I27L Is a Modifier of Age at Diabetes Diagnosis in Individuals With HNF1A-MODY. Diabetes, 2018, 67, 1903-1907.	0.3	12
33	Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics. Diabetologia, 2022, 65, 336-342.	2.9	12
34	How do I diagnose Maturity Onset Diabetes of the Young in my patients?. Clinical Endocrinology, 2022, 97, 436-447.	1.2	11
35	Patterns of postmeal insulin secretion in individuals with sulfonylurea-treated KCNJ11 neonatal diabetes show predominance of non-KATP-channel pathways. BMJ Open Diabetes Research and Care, 2019, 7, e000721.	1.2	9
36	Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1412-1422.	1.8	8

KASHYAP A PATEL

#	Article	IF	CITATIONS
37	Hyperglycaemiaâ€related complications at the time of diagnosis can cause permanent neurological disability in children with neonatal diabetes. Diabetic Medicine, 2017, 34, 1000-1004.	1.2	8
38	Unreliability of genotyping arrays for detecting very rare variants in human genetic studies: Example from a recent study of MC4R. Cell, 2021, 184, 1651.	13.5	8
39	DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life. Diabetologia, 2021, 64, 2258-2265.	2.9	8
40	<i>PLIN1</i> Haploinsufficiency Causes a Favorable Metabolic Profile. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2318-e2323.	1.8	7
41	Transient Neonatal Diabetes: An Etiologic Clue for the Adult Diabetologist. Canadian Journal of Diabetes, 2020, 44, 128-130.	0.4	5
42	Utility of systematic <i>TSHR</i> gene testing in adults with hyperthyroidism lacking overt autoimmunity and diffuse uptake on thyroid scintigraphy. Clinical Endocrinology, 2019, 90, 328-333.	1.2	4
43	Interpretation of thyroid scintigraphy is inconsistent among endocrinologists. Journal of Endocrinological Investigation, 2017, 40, 1155-1157.	1.8	3
44	Expanding the Phenotype of TRMT10A Mutations: Case Report and a Review of the Existing Cases. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2023, 15, 90-96.	0.4	3
45	MANF supports the inner hair cell synapse and the outer hair cell stereocilia bundle in the cochlea. Life Science Alliance, 2022, 5, e202101068.	1.3	3
46	More on STAT1 Gain of Function, Type 1 Diabetes, and JAK Inhibition. New England Journal of Medicine, 2021, 384, 93-94.	13.9	2
47	All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes. Wellcome Open Research, 2020, 5, 175.	0.9	2
48	Association of birthweight and penetrance of diabetes in individuals with HNF4A-MODY: a cohort study. Diabetologia, 2022, 65, 246-249.	2.9	2
49	Birth weight and diazoxide unresponsiveness strongly predict the likelihood of congenital hyperinsulinism due to a mutation in ABCC8 or KCNJ11. European Journal of Endocrinology, 2021, 185, 813-818.	1.9	2
50	Atypical comorbidities in a child considered to have type 1 diabetes led to the diagnosis of SLC29A3 spectrum disorder. Hormones, 2022, 21, 501-506.	0.9	2
51	The Absence of Islet Autoantibodies in Clinically Diagnosed Older-Adult Onset Type 1 Diabetes Suggests an Alternative Pathology, Advocating for Routine Testing in This Age Group. SSRN Electronic Journal, 0, , .	0.4	1
52	All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes. Wellcome Open Research, 2020, 5, 175.	0.9	1
53	Congenital beta cell defects are not associated with markers of islet autoimmunity, even in the context of high genetic risk for type 1 diabetes. Diabetologia, 2022, , 1.	2.9	1
54	Thyroid disease in pregnancy. The Obstetrician and Gynaecologist, 2009, 11, 150-151.	0.2	0

#	Article	IF	CITATIONS
55	All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes. Wellcome Open Research, 0, 5, 175.	0.9	0