
Jane E Wissinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6816948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	47.7	99
2	Student explorations of calcium alginate bead formation by varying pH and concentration of acidic beverage juices. Chemistry Teacher International, 2022, 4, 155-164.	1.7	3
3	Thirst for a Solution: Alginate Biopolymer Experiments for the Middle and High School Classroom. Journal of Chemical Education, 2022, 99, 1021-1025.	2.3	4
4	Exploring Divergent Green Reaction Media for the Copolymerization of Biobased Monomers in the Teaching Laboratory. Journal of Chemical Education, 2021, 98, 559-566.	2.3	3
5	Introducing the Journal of Chemical Education's Special Issue on Chemical Safety Education: Methods, Culture, and Green Chemistry. Journal of Chemical Education, 2021, 98, 1-6.	2.3	10
6	Integrating Sustainability into Learning in Chemistry. Journal of Chemical Education, 2021, 98, 1061-1063.	2.3	17
7	Highlights: Safety Blogs, Alane Reduction, Postlockdown Process Safety Concerns, and More. Journal of Chemical Health and Safety, 2021, 28, 10-13.	2.1	0
8	Systems Thinking and Sustainability. Chemistry International, 2021, 43, 6-10.	0.3	9
9	Designing Impactful Green and Sustainable Chemistry Workshops for High School Teachers. ACS Symposium Series, 2020, , 1-14.	0.5	1
10	Dyeing to Degrade: A Bioplastics Experiment for College and High School Classrooms. Journal of Chemical Education, 2019, 96, 2565-2573.	2.3	12
11	Integrating Green Chemistry in the Curriculum: Building Student Skills in Systems Thinking, Safety, and Sustainability. Journal of Chemical Education, 2019, 96, 2872-2880.	2.3	49
12	lodination of vanillin and subsequent Suzuki-Miyaura coupling: two-step synthetic sequence teaching green chemistry principles. Green Chemistry Letters and Reviews, 2019, 12, 117-126.	4.7	7
13	Journal of Chemical Education Call for Papers—Special Issue on Chemical Safety Education: Methods, Culture, and Green Chemistry. Journal of Chemical Education, 2019, 96, 1055-1057.	2.3	5
14	Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry. Journal of Chemical Education, 2017, 94, 1761-1765.	2.3	19
15	Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustainable Chemistry and Engineering, 2017, 5, 9185-9190.	6.7	42
16	6-Bromo-7-hydroxy-3-methylcoumarin (mBhc) is an efficient multi-photon labile protecting group for thiol caging and three-dimensional chemical patterning. Organic and Biomolecular Chemistry, 2016, 14, 8289-8300.	2.8	24
17	Synthesis and Study of Sustainable Polymers in the Organic Chemistry Laboratory: An Inquiry-Based Experiment Exploring the Effects of Size and Composition on the Properties of Renewable Block Polymers. ACS Symposium Series, 2016, , 123-147.	0.5	6
18	Illustrating the Utility of X-ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels–Alder Reaction Sequence. Journal of Chemical Education, 2015, 92, 1381-1384.	2.3	9

#	Article	IF	CITATIONS
19	Sustainable Polymers in the Organic Chemistry Laboratory: Synthesis and Characterization of a Renewable Polymer from δ-Decalactone and <scp>l</scp> -Lactide. Journal of Chemical Education, 2014, 91, 131-135.	2.3	37
20	Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory. Journal of Chemical Education, 2011, 88, 652-656.	2.3	34
21	Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Macromolecules, 2011, 44, 87-94.	4.8	126
22	Total synthesis of (.+)-poitediol and (.+)-dactylol. Journal of the American Chemical Society, 1986, 108, 6343-6350.	13.7	61
23	Perhydroazulenes. 6. 4-Keto derivatives with bridgehead methyl substituents. Journal of Organic Chemistry, 1986, 51, 2408-2416.	3.2	17
24	Total synthesis of (.+)-poitediol and (.+)4-epipoitediol. Journal of the American Chemical Society, 1984, 106, 3869-3870.	13.7	44
25	Perhydroazulenes. 5. Preparation of perhydroazul-9(10)-en-4-one. Journal of Organic Chemistry, 1983, 48, 5285-5288.	3.2	14