
Pearse A Keane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6816641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 2018, 24, 1342-1350.	15.2	1,551
2	A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health, 2019, 1, e271-e297.	5.9	930
3	Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 2019, 103, 167-175.	2.1	754
4	The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. The Lancet Global Health, 2021, 9, e489-e551.	2.9	549
5	Deep learning in ophthalmology: The technical and clinical considerations. Progress in Retinal and Eye Research, 2019, 72, 100759.	7.3	300
6	Analysis of Normal Retinal Nerve Fiber Layer Thickness by Age, Sex, and Race Using Spectral Domain Optical Coherence Tomography. Journal of Glaucoma, 2013, 22, 532-541.	0.8	231
7	Evaluation of Age-related Macular Degeneration With Optical Coherence Tomography. Survey of Ophthalmology, 2012, 57, 389-414.	1.7	230
8	State of science: Choroidal thickness and systemic health. Survey of Ophthalmology, 2016, 61, 566-581.	1.7	198
9	Choroidal Vascularity Index (CVI) - A Novel Optical Coherence Tomography Parameter for Monitoring Patients with Panuveitis?. PLoS ONE, 2016, 11, e0146344.	1.1	190
10	Fundus Photography in the 21st Century—A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare. Telemedicine Journal and E-Health, 2016, 22, 198-208.	1.6	184
11	Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. The Lancet Digital Health, 2019, 1, e232-e242.	5.9	183
12	Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine, 2020, 26, 892-899.	15.2	178
13	With an eye to Al and autonomous diagnosis. Npj Digital Medicine, 2018, 1, 40.	5.7	163
14	Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration. Ophthalmology, 2013, 120, 2656-2665.	2.5	161
15	A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. The Lancet Digital Health, 2021, 3, e51-e66.	5.9	153
16	Spatial Distribution of Posterior Pole Choroidal Thickness by Spectral Domain Optical Coherence Tomography. , 2011, 52, 7019.		142
17	The Effects of Macular Ischemia on Visual Acuity in Diabetic Retinopathy. , 2013, 54, 2353.		138
18	Association of Retinal Nerve Fiber Layer Thinning With Current and Future Cognitive Decline. JAMA Neurology, 2018, 75, 1198.	4.5	136

#	Article	IF	CITATIONS
19	Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. The Lancet Digital Health, 2020, 2, e549-e560.	5.9	135
20	Deep Learning for Predicting Refractive Error From Retinal Fundus Images. , 2018, 59, 2861.		127
21	Quantitative Subanalysis of Optical Coherence Tomography after Treatment with Ranibizumab for Neovascular Age-Related Macular Degeneration. , 2008, 49, 3115.		126
22	Patterns of Peripheral Retinal and Central Macula Ischemia in Diabetic Retinopathy as Evaluated by Ultra-widefield Fluorescein Angiography. American Journal of Ophthalmology, 2014, 158, 144-153.e1.	1.7	122
23	Optical Coherence Tomography Angiography for Anterior Segment Vasculature Imaging. Ophthalmology, 2015, 122, 1740-1747.	2.5	122
24	Optical coherence tomography angiography: a review of current and future clinical applications. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 237-245.	1.0	120
25	Sensitivity and Specificity of Spectral-Domain Optical Coherence Tomography in Detecting Idiopathic Polypoidal Choroidal Vasculopathy. American Journal of Ophthalmology, 2014, 158, 1228-1238.e1.	1.7	119
26	Relationship between Optical Coherence Tomography Retinal Parameters and Visual Acuity in Diabetic Macular Edema. Ophthalmology, 2010, 117, 2379-2386.	2.5	116
27	Real and virtual mobility performance in simulated prosthetic vision. Journal of Neural Engineering, 2007, 4, S92-S101.	1.8	114
28	Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. The Lancet Digital Health, 2020, 2, e537-e548.	5.9	112
29	Retinal Imaging in the Twenty-First Century. Ophthalmology, 2014, 121, 2489-2500.	2.5	110
30	A Clinician's Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies. Translational Vision Science and Technology, 2020, 9, 7.	1.1	109
31	Objective Measurement of Vitreous Inflammation Using Optical Coherence Tomography. Ophthalmology, 2014, 121, 1706-1714.	2.5	104
32	PERIPAPILLARY PACHYCHOROID SYNDROME. Retina, 2018, 38, 1652-1667.	1.0	104
33	Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Translational Vision Science and Technology, 2020, 9, 6.	1.1	103
34	Forecasting future Humphrey Visual Fields using deep learning. PLoS ONE, 2019, 14, e0214875.	1.1	102
35	The Evaluation of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography. , 2016, 57, 626.		99
36	Characterization of Birdshot Chorioretinopathy Using Extramacular Enhanced Depth Optical Coherence Tomography. JAMA Ophthalmology, 2013, 131, 341.	1.4	98

#	Article	IF	CITATIONS
37	Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography. , 2016, 57, OCT585.		95
38	Relationship Between Optical Coherence Tomography Retinal Parameters and Visual Acuity in Neovascular Age-Related Macular Degeneration. Ophthalmology, 2008, 115, 2206-2214.	2.5	94
39	Birdshot chorioretinopathy: current knowledge and new concepts in pathophysiology, diagnosis, monitoring and treatment. Orphanet Journal of Rare Diseases, 2016, 11, 61.	1.2	92
40	Spectral-Domain Optical Coherence Tomography Imaging in 67 321 Adults. Ophthalmology, 2016, 123, 829-840.	2.5	92
41	Code-free deep learning for multi-modality medical image classification. Nature Machine Intelligence, 2021, 3, 288-298.	8.3	90
42	Foveomacular Schisis in Juvenile X-Linked Retinoschisis: An Optical Coherence Tomography Study. American Journal of Ophthalmology, 2010, 149, 973-978.e2.	1.7	89
43	Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration. Ophthalmology, 2018, 125, 1028-1036.	2.5	88
44	Systematic Evaluation of Optical Coherence Tomography Angiography in Retinal Vein Occlusion. American Journal of Ophthalmology, 2016, 163, 93-107.e6.	1.7	87
45	Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. British Journal of Ophthalmology, 2016, 100, 1557-1563.	2.1	80
46	En face optical coherence tomography angiography for corneal neovascularisation. British Journal of Ophthalmology, 2016, 100, 616-621.	2.1	80
47	Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nature Communications, 2020, 11, 130.	5.8	79
48	Reevaluating the Definition of Intraretinal Microvascular Abnormalities and Neovascularization Elsewhere in Diabetic Retinopathy Using Optical Coherence Tomography and Fluorescein Angiography. American Journal of Ophthalmology, 2015, 159, 101-110.e1.	1.7	73
49	Predictive Factors for the Progression of Diabetic Macular Ischemia. American Journal of Ophthalmology, 2013, 156, 684-692.e1.	1.7	72
50	Punctate inner choroidopathy: A review. Survey of Ophthalmology, 2017, 62, 113-126.	1.7	72
51	The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons. Kidney International, 2020, 98, 323-342.	2.6	72
52	Characteristic optical coherence tomography findings in patients with primary vitreoretinal lymphoma: a novel aid to early diagnosis. British Journal of Ophthalmology, 2018, 102, 1362-1366.	2.1	70
53	The Evolution of Teleophthalmology Programs in the United Kingdom. Journal of Diabetes Science and Technology, 2016, 10, 308-317.	1.3	67
54	Quantitative Analysis of Peripheral Vasculitis, Ischemia, and Vascular Leakage in Uveitis Using Ultra-Widefield Fluorescein Angiography. American Journal of Ophthalmology, 2015, 159, 1161-1168.e1.	1.7	66

#	Article	IF	CITATIONS
55	Implementation of a cloud-based referral platform in ophthalmology: making telemedicine services a reality in eye care. British Journal of Ophthalmology, 2020, 104, 312-317.	2.1	65
56	Predicting sex from retinal fundus photographs using automated deep learning. Scientific Reports, 2021, 11, 10286.	1.6	65
57	Comparison of Associations with Different Macular Inner Retinal Thickness Parameters in a Large Cohort. Ophthalmology, 2020, 127, 62-71.	2.5	64
58	Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 2021, 128, 693-705.	2.5	64
59	Quantitative Analysis of Diabetic Macular Ischemia Using Optical Coherence Tomography. , 2014, 55, 417.		63
60	Evaluation of Optical Coherence Tomography Retinal Thickness Parameters for Use in Clinical Trials for Neovascular Age-Related Macular Degeneration. , 2009, 50, 3378.		58
61	Grading of Age-Related Macular Degeneration: Comparison between Color Fundus Photography, Fluorescein Angiography, and Spectral Domain Optical Coherence Tomography. Journal of Ophthalmology, 2013, 2013, 1-6.	0.6	58
62	Automated Retinal Image Analysis for Diabetic Retinopathy in Telemedicine. Current Diabetes Reports, 2015, 15, 14.	1.7	57
63	Impact of Scanning Density on Measurements from Spectral Domain Optical Coherence Tomography. , 2010, 51, 1071.		56
64	Relationship between Outer Retinal Thickness Substructures and Visual Acuity in Eyes with Dry Age-Related Macular Degeneration. , 2011, 52, 6743.		56
65	Repeatability and Reproducibility of Choroidal Vessel Layer Measurements in Diabetic Retinopathy Using Enhanced Depth Optical Coherence Tomography. , 2013, 54, 2893.		54
66	COMPARING FUNDUS FLUORESCEIN ANGIOGRAPHY AND SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN THE EVALUATION OF DIABETIC MACULAR PERFUSION. Retina, 2019, 39, 926-937.	1.0	54
67	Enhanced Depth Imaging Optical Coherence Tomography of Optic Nerve Head Drusen. Ophthalmology, 2017, 124, 66-73.	2.5	53
68	Implementation of medical retina virtual clinics in a tertiary eye care referral centre. British Journal of Ophthalmology, 2018, 102, 1391-1395.	2.1	53
69	Quantitative Subanalysis of Cystoid Spaces and Outer Nuclear Layer Using Optical Coherence Tomography in Age-Related Macular Degeneration. , 2009, 50, 3366.		52
70	The extended clinical phenotype of dome-shaped macula. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 499-508.	1.0	51
71	UK AMD EMR USERS GROUP REPORT V: benefits of initiating ranibizumab therapy for neovascular AMD in eyes with vision better than 6/12. British Journal of Ophthalmology, 2015, 99, 1045-1050.	2.1	51
72	Ten-year outcomes of antivascular endothelial growth factor therapy in neovascular age-related macular degeneration. Eye, 2020, 34, 1888-1896.	1.1	51

#	Article	IF	CITATIONS
73	Effects of Retinal Morphology on Contrast Sensitivity and Reading Ability in Neovascular Age-Related Macular Degeneration. , 2010, 51, 5431.		50
74	Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science and Technology, 2020, 9, 55.	1.1	49
75	Sequence of clinical and neurodegeneration events in Parkinson's disease progression. Brain, 2021, 144, 975-988.	3.7	49
76	Detection of Cystoid Macular Edema with Three-Dimensional Optical Coherence Tomography versus Fluorescein Angiography. , 2010, 51, 5213.		46
77	Biomarkers and Surrogate Endpoints in Uveitis: The Impact of Quantitative Imaging. , 2017, 58, BIO131.		46
78	New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology. British Journal of Ophthalmology, 2022, 106, 889-892.	2.1	46
79	Relationship between Visual Acuity and Spectral Domain Optical Coherence Tomography Retinal Parameters in Neovascular Age-Related Macular Degeneration. Ophthalmologica, 2014, 231, 37-44.	1.0	45
80	Characterization of Punctate Inner Choroidopathy Using Enhanced Depth Imaging Optical Coherence Tomography. Ophthalmology, 2014, 121, 1790-1797.	2.5	45
81	Paravascular Pathways in the Eye: Is There an â \in Ocular Glymphatic System'?. , 2015, 56, 3955.		45
82	Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy. British Journal of Ophthalmology, 2021, 105, 118-123.	2.1	45
83	Optical coherence tomography angiography: a non-invasive tool to image end-arterial system. Expert Review of Medical Devices, 2016, 13, 519-521.	1.4	44
84	Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. The Lancet Digital Health, 2021, 3, e665-e675.	5.9	44
85	Evaluation of retinal pigment epithelium–Bruch's membrane complex thickness in dry age-related macular degeneration using optical coherence tomography. British Journal of Ophthalmology, 2013, 97, 1256-1261.	2.1	43
86	Comparison of Clinically Relevant Findings from High-Speed Fourier-Domain and Conventional Time-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2009, 148, 242-248.e1.	1.7	42
87	Development of Anti-VEGF Therapies for Intraocular Use: A Guide for Clinicians. Journal of Ophthalmology, 2012, 2012, 1-13.	0.6	42
88	Strategies for improving early detection and diagnosis of neovascular age-related macular degeneration. Clinical Ophthalmology, 2015, 9, 353.	0.9	42
89	Deferral of first review after uneventful phacoemulsification cataract surgery until 2 weeks. Journal of Cataract and Refractive Surgery, 2007, 33, 1591-1596.	0.7	41
90	Long-term visual and anatomical outcomes following anti-VEGF monotherapy for retinal angiomatous proliferation. British Journal of Ophthalmology, 2010, 94, 701-705.	2.1	41

#	Article	IF	CITATIONS
91	Visual tests predict dementia risk in Parkinson disease. Neurology: Clinical Practice, 2020, 10, 29-39.	0.8	41
92	Optical coherence tomography in the 2020s—outside the eye clinic. Eye, 2021, 35, 236-243.	1.1	40
93	Optical Coherence Tomography in the UK Biobank Study – Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies. PLoS ONE, 2016, 11, e0164095.	1.1	40
94	Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Translational Vision Science and Technology, 2020, 9, 22.	1.1	39
95	Associations with Retinal Pigment Epithelium Thickness Measures in a Large Cohort. Ophthalmology, 2017, 124, 105-117.	2.5	38
96	Effect of Face-Down Positioning vs Support-the-Break Positioning After Macula-Involving Retinal Detachment Repair. JAMA Ophthalmology, 2020, 138, 634.	1.4	38
97	Protecting Data Privacy in the Age of Al-Enabled Ophthalmology. Translational Vision Science and Technology, 2020, 9, 36.	1.1	37
98	Automated Analysis of Vitreous Inflammation Using Spectral-Domain Optical Coherence Tomography. Translational Vision Science and Technology, 2015, 4, 4.	1.1	36
99	Optical coherence tomography angiography of foveal hypoplasia. British Journal of Ophthalmology, 2017, 101, 985-988.	2.1	36
100	RISK FACTORS FOR PROLIFERATIVE DIABETIC RETINOPATHY IN A LATINO AMERICAN POPULATION. Retina, 2014, 34, 1594-1599.	1.0	34
101	Automated analysis of retinal imaging using machine learningÂtechniques for computer vision. F1000Research, 2016, 5, 1573.	0.8	34
102	Clinical Outcomes of a Hospital-Based Teleophthalmology Service. Ophthalmology Retina, 2019, 3, 422-428.	1.2	33
103	Artificial intelligence extension of the OSCARâ€IB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	1.7	33
104	Risk Factors for Age-Related Maculopathy. Journal of Ophthalmology, 2009, 2009, 1-39.	0.6	32
105	Efficacy of dexamethasone versus bevacizumab on regression of hard exudates in diabetic maculopathy: data from the BEVORDEX randomised clinical trial. British Journal of Ophthalmology, 2016, 100, 1000-1004.	2.1	32
106	Different phenotypes of the appearance of the outer plexiform layer on optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 2311-2317.	1.0	31
107	The Retinal Disease Screening Study: Prospective Comparison of Nonmydriatic Fundus Photography and Optical Coherence Tomography for Detection of Retinal Irregularities. , 2013, 54, 1460.		31
108	Characterizing the lacrimal punctal region using anterior segment optical coherence tomography. Acta Ophthalmologica, 2016, 94, 154-159.	0.6	31

#	Article	IF	CITATIONS
109	Evaluation of Objective Vitritis Grading Method Using Optical Coherence Tomography: Influence of Phakic Status and Previous Vitrectomy. American Journal of Ophthalmology, 2016, 161, 172-180.e4.	1.7	31
110	Paracentral Acute Middle Maculopathy in Sickle Cell Disease. JAMA Ophthalmology, 2015, 133, 614.	1.4	30
111	Objective Evaluation of Proliferative Diabetic Retinopathy Using OCT. Ophthalmology Retina, 2020, 4, 164-174.	1.2	30
112	Predicting visual outcomes for macular disease using optical coherence tomography. Saudi Journal of Ophthalmology, 2011, 25, 145-158.	0.3	29
113	Associations with Corneal Hysteresis in a Population Cohort. Ophthalmology, 2019, 126, 1500-1510.	2.5	29
114	Clinical Applications of Long-Wavelength (1,000-nm) Optical Coherence Tomography. Ophthalmic Surgery Lasers and Imaging Retina, 2011, 42, S67-74.	0.4	29
115	Choroidal assessment in idiopathic panuveitis using optical coherence tomography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 2029-2036.	1.0	27
116	Insights From Survival Analyses During 12 Years of Anti–Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 57.	1.4	27
117	Al-facilitated health care requires education of clinicians. Lancet, The, 2021, 397, 1254.	6.3	27
118	Intravitreal injections: past trends and future projections within a UK tertiary hospital. Eye, 2022, 36, 1373-1378.	1.1	27
119	Relationship between angiographic and optical coherence tomographic (OCT) parameters for quantifying choroidal neovascular lesions. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248, 175-184.	1.0	26
120	Optical Coherence Tomography Angiography of Choroidal Neovascularization Associated with Tuberculous Serpiginous-like Choroiditis. Ocular Immunology and Inflammation, 2016, 24, 699-701.	1.0	26
121	Moorfields AMD database report 2: fellow eye involvement with neovascular age-related macular degeneration. British Journal of Ophthalmology, 2020, 104, 684-690.	2.1	26
122	Evaluation of Nonperfused Retinal Vessels in Ischemic Retinopathy. , 2016, 57, 5031.		25
123	One- and two-year visual outcomes from the Moorfields age-related macular degeneration database: a retrospective cohort study and an open science resource. BMJ Open, 2019, 9, e027441.	0.8	25
124	Hypertensive eye disease. Nature Reviews Disease Primers, 2022, 8, 14.	18.1	25
125	Evaluation of Cystoid Change Phenotypes in Ocular Toxoplasmosis Using Optical Coherence Tomography. PLoS ONE, 2014, 9, e86626.	1.1	24
126	Segmentation error in spectral domain optical coherence tomography measures of the retinal nerve fibre layer thickness in idiopathic intracranial hypertension. BMC Ophthalmology, 2017, 17, 257.	0.6	24

#	Article	IF	CITATIONS
127	Comparative Analysis of Anterior Chamber Flare Grading between Clinicians with Different Levels of Experience and Semi-automated Laser Flare Photometry. Ocular Immunology and Inflammation, 2016, 24, 1-10.	1.0	23
128	Quantitative analysis of vitreous inflammation using optical coherence tomography in patients receiving sub-Tenon's triamcinolone acetonide for uveitic cystoid macular oedema. British Journal of Ophthalmology, 2017, 101, 175-179.	2.1	23
129	Intravitreal aflibercept for diabetic macular oedema: Moorfields' real-world 12-month visual acuity and anatomical outcomes. European Journal of Ophthalmology, 2020, 30, 557-562.	0.7	23
130	Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology Retina, 2021, 5, 1074-1084.	1.2	23
131	Artificial Intelligence to Reduce Ocular Health Disparities: Moving From Concept to Implementation. Translational Vision Science and Technology, 2021, 10, 19.	1.1	23
132	Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning. JAMA Ophthalmology, 2021, 139, 964.	1.4	23
133	Diabetic macular ischaemia is associated with narrower retinal arterioles in patients with type 2 diabetes. Acta Ophthalmologica, 2015, 93, e45-51.	0.6	22
134	Optical Coherence Tomography Features Of Active And Inactive Retinal Neovascularization In Proliferative Diabetic Retinopathy. Retina, 2016, 36, 1132-1142.	1.0	22
135	Time to regenerate: the doctor in the age of artificial intelligence. Journal of the Royal Society of Medicine, 2018, 111, 113-116.	1.1	22
136	Anterior Segment Optical Coherence Tomographic Angiography Assessment of Acute Chemical Injury. American Journal of Ophthalmology, 2019, 205, 165-174.	1.7	22
137	Advanced OCT Analysis of Biopsy-proven Vitreoretinal Lymphoma. American Journal of Ophthalmology, 2022, 238, 16-26.	1.7	22
138	Deep Learning to Detect OCT-derived Diabetic Macular Edema from Color Retinal Photographs. Ophthalmology Retina, 2022, 6, 398-410.	1.2	22
139	AlzEye: longitudinal record-level linkage of ophthalmic imaging and hospital admissions of 353 157 patients in London, UK. BMJ Open, 2022, 12, e058552.	0.8	22
140	MULTIMODALITY IMAGING OF TORPEDO MACULOPATHY WITH SWEPT-SOURCE, EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retinal Cases and Brief Reports, 2018, 12, 153-157.	0.3	21
141	A Study of the Natural History of Vitreomacular Traction Syndrome by OCT. Ophthalmology, 2018, 125, 701-707.	2.5	21
142	Longitudinal Development of Peripapillary Hyperâ€Reflective Ovoid Masslike Structures Suggests a Novel Pathological Pathway in <scp>Multiple Sclerosis</scp> . Annals of Neurology, 2020, 88, 309-319.	2.8	21
143	Will AI Replace Ophthalmologists?. Translational Vision Science and Technology, 2020, 9, 2.	1.1	21
144	Automated deep learning in ophthalmology: AI that can build AI. Current Opinion in Ophthalmology, 2021, 32, 406-412.	1.3	21

#	Article	IF	CITATIONS
145	AutoMorph: Automated Retinal Vascular Morphology Quantification Via a Deep Learning Pipeline. Translational Vision Science and Technology, 2022, 11, 12.	1.1	21
146	Assessment of Differential Pharmacodynamic Effects Using Optical Coherence Tomography in Neovascular Age-Related Macular Degeneration. , 2012, 53, 1152.		20
147	Impact of scanning density on spectral domain optical coherence tomography assessments in neovascular ageâ€related macular degeneration. Acta Ophthalmologica, 2012, 90, e274-80.	0.6	20
148	The Application of Infrared Imaging and Optical Coherence Tomography of the Lacrimal Punctum in Patients Undergoing Punctoplasty for Epiphora. Ophthalmology, 2017, 124, 910-917.	2.5	20
149	Automated analysis of retinal imaging using machine learningÂtechniques for computer vision. F1000Research, 2016, 5, 1573.	0.8	20
150	Optical coherence tomography (OCT) in unconscious and systemically unwell patients using a mobile OCT device: a pilot study. BMJ Open, 2019, 9, e030882.	0.8	20
151	Delivering personalized medicine in retinal care: from artificial intelligence algorithms to clinical application. Current Opinion in Ophthalmology, 2020, 31, 329-336.	1.3	20
152	Retinal asymmetry in multiple sclerosis. Brain, 2021, 144, 224-235.	3.7	20
153	Lamination of the Outer Plexiform Layer in Optic Atrophy Caused by Dominant WFS1 Mutations. Ophthalmology, 2016, 123, 1624-1626.	2.5	19
154	QUANTITATIVE ANALYSIS OF PIGMENT EPITHELIAL DETACHMENT RESPONSE TO DIFFERENT ANTI–VASCULAR ENDOTHELIAL GROWTH FACTOR AGENTS IN WET AGE-RELATED MACULAR DEGENERATION. Retina, 2017, 37, 1297-1304.	1.0	19
155	Clinical Phenotypes of Poppers Maculopathy and Their Links to Visual and Anatomic Recovery. Ophthalmology, 2017, 124, 1425-1427.	2.5	19
156	Characterizing the Occluded Lacrimal Punctum Using Anterior Segment Optical Coherence Tomography. Ophthalmic Plastic and Reconstructive Surgery, 2018, 34, 26-30.	0.4	19
157	Phenotyping of retinal neovascularization in ischemic retinal vein occlusion using wide field OCT angiography. Eye, 2021, 35, 2812-2819.	1.1	19
158	Gabor fusion master slave optical coherence tomography. Biomedical Optics Express, 2017, 8, 813.	1.5	18
159	Human Factor and Usability Testing of a Binocular Optical Coherence Tomography System. Translational Vision Science and Technology, 2017, 6, 16.	1.1	18
160	UK Neovascular Age-Related Macular Degeneration Database. Report 6: time to retreatment after a pause in therapy. Outcomes from 92â€976 intravitreal ranibizumab injections. British Journal of Ophthalmology, 2016, 100, 1617-1622.	2.1	17
161	Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical Practice Settings. JAMA Ophthalmology, 2022, 140, 153.	1.4	17
162	Vascular Changes in Eyes Treated with Dexamethasone Intravitreal Implant for Macular Edema after Retinal Vein Occlusion. Ophthalmology, 2013, 120, 1423-1431.	2.5	16

#	Article	IF	CITATIONS
163	Corner-Based Geometric Calibration of Multi-focus Plenoptic Cameras. , 2017, , .		16
164	Instrument-based Tests for Measuring Anterior Chamber Cells in Uveitis: A Systematic Review. Ocular Immunology and Inflammation, 2020, 28, 898-907.	1.0	16
165	From Data to Deployment. Ophthalmology, 2022, 129, e43-e59.	2.5	16
166	Retinal vein occlusion and macular edema – critical evaluation of the clinical value of ranibizumab. Clinical Ophthalmology, 2011, 5, 771.	0.9	15
167	Atypical Outer Retinal Fluid Accumulation in Choroidal Neovascularization: A Novel OCT Finding. Ophthalmic Surgery Lasers and Imaging Retina, 2013, 44, S11-S18.	0.4	15
168	SUBCLINICAL MACULAR CHANGES AND DISEASE LATERALITY IN PEDIATRIC COATS DISEASE DETERMINED BY QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2019, 39, 2392-2398.	1.0	15
169	Associations with photoreceptor thickness measures in the UK Biobank. Scientific Reports, 2019, 9, 19440.	1.6	15
170	Optical Coherence Tomography in Pediatric Ophthalmology: Current Roles and Future Directions. Ophthalmic Surgery Lasers and Imaging Retina, 2013, 44, S19-S29.	0.4	15
171	OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN DEFERASIROX-RELATED MACULOPATHY. Retinal Cases and Brief Reports, 2010, 4, 229-232.	0.3	14
172	The Ocular Glymphatic System and Idiopathic Intracranial Hypertension: Author Response to "Hypodense Holes and the Ocular Glymphatic System― , 2017, 58, 1134.		14
173	OCT Angiography in Acute Posterior Multifocal Placoid Pigment Epitheliopathy. Ophthalmic Surgery Lasers and Imaging Retina, 2019, 50, 428-436.	0.4	14
174	EFFECT OF RANIBIZUMAB RETREATMENT FREQUENCY ON NEUROSENSORY RETINAL VOLUME IN NEOVASCULAR AMD. Retina, 2009, 29, 592-600.	1.0	13
175	Classification of semiâ€automated flare readings using the <scp>K</scp> owa <scp>FM</scp> 700 laser cell flare meter in patients with uveitis. Acta Ophthalmologica, 2016, 94, e135-41.	0.6	13
176	Dome-Shaped Macula: A Compensatory Mechanism in Myopic Anisometropia?. Ophthalmic Surgery Lasers and Imaging Retina, 2012, 43, e52-4.	0.4	13
177	The Retinal Disease Screening Study: Retrospective Comparison of Nonmydriatic Fundus Photography and Three-Dimensional Optical Coherence Tomography for Detection of Retinal Irregularities. , 2013, 54, 5694.		12
178	Use of a Binocular Optical Coherence Tomography System to Evaluate Strabismus in Primary Position. JAMA Ophthalmology, 2018, 136, 811.	1.4	12
179	Applications of interpretability in deep learning models for ophthalmology. Current Opinion in Ophthalmology, 2021, 32, 452-458.	1.3	12
180	Multimodal Imaging of Macular Serpiginous Choroidopathy From Acute Presentation to Quiescence. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 266-270.	0.4	12

#	Article	IF	CITATIONS
181	Metformin and risk of age-related macular degeneration in individuals with type 2 diabetes: a retrospective cohort study. British Journal of Ophthalmology, 2023, 107, 980-986.	2.1	12
182	Optical Coherence Tomography in the Diagnosis and Management of Diabetic Retinopathy. International Ophthalmology Clinics, 2009, 49, 61-74.	0.3	11
183	Acute Dacryocystitis Associated with Epstein-Barr Virus Infection. Orbit, 2011, 30, 245-248.	0.5	11
184	Characteristics and racial variations of polypoidal choroidal vasculopathy in tertiary centers in the United States and United Kingdom. International Journal of Retina and Vitreous, 2017, 3, 9.	0.9	11
185	ReLayer: a Free, Online Tool for Extracting Retinal Thickness From Cross-Platform OCT Images. Translational Vision Science and Technology, 2019, 8, 25.	1.1	11
186	Under-utilisation of reproducible, child appropriate or patient reported outcome measures in childhood uveitis interventional research. Orphanet Journal of Rare Diseases, 2019, 14, 125.	1.2	11
187	Imaging in Tubercular Choroiditis: Current Concepts. Ocular Immunology and Inflammation, 2020, 28, 1223-1238.	1.0	11
188	EVALUATION OF THE AXIAL LOCATION OF CYSTOID SPACES IN RETINAL VEIN OCCLUSION USING OPTICAL COHERENCE TOMOGRAPHY. Retina, 2013, 33, 1011-1019.	1.0	10
189	Assessment of retinal vascular calibres as a biomarker of disease activity in birdshot chorioretinopathy. Acta Ophthalmologica, 2017, 95, e113-e118.	0.6	10
190	A virtual-clinic pathway for patients referred from a national diabetes eye screening programme reduces service demands whilst maintaining quality of care. Eye, 2021, 35, 2260-2269.	1.1	10
191	Artificial Intelligence and Deep Learning in Ophthalmology. , 2021, , 1-34.		10
192	Acute Severe Visual Decrease After Photodynamic Therapy with Verteporfin: Spectral-Domain OCT Features. Ophthalmic Surgery Lasers and Imaging Retina, 2010, 41, S85-8.	0.4	10
193	Depot Indocyanine green dye for <i>in vivo</i> visualization of infiltrating leukocytes. DMM Disease Models and Mechanisms, 2015, 8, 1479-87.	1.2	9
194	Discrepancies in assessing anterior chamber activity among uveitis specialists. Japanese Journal of Ophthalmology, 2016, 60, 206-211.	0.9	9
195	Test performance of optical coherence tomography angiography in detecting retinal diseases: a systematic review and meta-analysis. Eye, 2019, 33, 1327-1338.	1.1	9
196	Merging Information From Infrared and Autofluorescence Fundus Images for Monitoring of Chorioretinal Atrophic Lesions. Translational Vision Science and Technology, 2020, 9, 38.	1.1	9
197	Advances in Imaging in Age-Related Macular Degeneration. Current Ophthalmology Reports, 2013, 1, 1-11.	0.5	8
198	Subretinal Fluid in Eyes with Active Ocular Toxoplasmosis Observed Using Spectral Domain Optical Coherence Tomography. PLoS ONE, 2015, 10, e0127683.	1.1	8

#	Article	IF	CITATIONS
199	Adjunctive use of systematic retinal thickness map analysis to monitor disease activity in punctate inner choroidopathy. Journal of Ophthalmic Inflammation and Infection, 2016, 6, 9.	1.2	8
200	Multimodal Imaging in the Management of Choroidal Neovascularization Secondary to Central Serous Chorioretinopathy. Journal of Clinical Medicine, 2020, 9, 1934.	1.0	8
201	Paracentral acute middle maculopathy after uneventful ocular surgery with local anaesthetic blocks. Eye, 2022, 36, 219-227.	1.1	8
202	Al-based structure-function correlation in age-related macular degeneration. Eye, 2021, 35, 2110-2118.	1.1	8
203	Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study—HERMES study report 1—study protocol. BMJ Open, 2022, 12, e055845.	0.8	8
204	Associations of Alcohol Consumption and Smoking With Disease Risk and Neurodegeneration in Individuals With Multiple Sclerosis in the United Kingdom. JAMA Network Open, 2022, 5, e220902.	2.8	8
205	Spontaneous macular hole closure without posterior vitreous detachment in a patient previously treated for diabetic maculopathy. Acta Ophthalmologica, 2013, 91, e156-7.	0.6	7
206	Juxtapapillary Pigment Epithelium Detachment Observed in Asymptomatic Participants Using Optical Coherence Tomography. , 2013, 54, 1144.		7
207	Adaptive Optics Imaging Shows Rescue of Macula Cone Photoreceptors. Ophthalmology, 2014, 121, 430-431.e3.	2.5	7
208	Spontaneous retinal pigment epithelial tear in type 2 choroidal neovascularization: repair mechanisms following anti-VEGF therapy. International Journal of Retina and Vitreous, 2019, 5, 4.	0.9	7
209	Instrument-based tests for measuring anterior chamber cells in uveitis: a systematic review protocol. Systematic Reviews, 2019, 8, 30.	2.5	7
210	Non-invasive Instrument-Based Tests for Quantifying Anterior Chamber Flare in Uveitis: A Systematic Review. Ocular Immunology and Inflammation, 2021, 29, 982-990.	1.0	7
211	Medicine and meteorology: Cloud, connectivity, and care. Lancet, The, 2020, 395, 1334.	6.3	7
212	Clinician-driven artificial intelligence in ophthalmology: resources enabling democratization. Current Opinion in Ophthalmology, 2021, 32, 445-451.	1.3	7
213	Evaluating an automated machine learning model that predicts visual acuity outcomes in patients with neovascular age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, , 1.	1.0	7
214	Effect of total anti-VEGF treatment exposure on patterns of choroidal neovascularisation assessed by optical coherence tomography angiography in age-related macular degeneration: a retrospective case series. BMJ Open Ophthalmology, 2019, 4, e000244.	0.8	6
215	The potential application of artificial intelligence for diagnosis and management of glaucoma in adults. British Medical Bulletin, 2020, 134, 21-33.	2.7	6
216	Data Science in <i>Translational Vision Science and Technology</i> . Translational Vision Science and Technology, 2021, 10, 20.	1.1	6

#	Article	IF	CITATIONS
217	Agreement Between Spectral-Domain and Swept-Source Optical Coherence Tomography Retinal Thickness Measurements in Macular and Retinal Disease. Ophthalmology and Therapy, 2021, 10, 913-922.	1.0	6
218	OCT Assisted Quantification of Vitreous Inflammation in Uveitis. Translational Vision Science and Technology, 2022, 11, 3.	1.1	6
219	Beyond anti-VEGF: can faricimab reduce treatment burden for retinal disease?. Lancet, The, 2022, 399, 697-699.	6.3	6
220	Central retinal vein occlusion: a case report and review of the literature. Cases Journal, 2009, 2, 7170.	0.4	5
221	Management of Neovascular Age-Related Macular Degeneration in Clinical Practice: Initiation, Maintenance, and Discontinuation of Therapy. Journal of Ophthalmology, 2011, 2011, 1-10.	0.6	5
222	Morphometric features on enhanced depth imaging optical coherence tomography scans in idiopathic posterior uveitis or panuveitis. International Ophthalmology, 2018, 38, 993-1002.	0.6	5
223	PREVALENCE OF FOVEOLAR LUCENCY WITH DIFFERENT GAS TAMPONADES IN SURGICALLY CLOSED MACULAR HOLES ASSESSED BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY. Retina, 2018, 38, 1699-1706.	1.0	5
224	Reinventing the eye exam. Lancet, The, 2019, 394, 2141.	6.3	5
225	Learning to Address Intra-segment Misclassification in Retinal Imaging. Lecture Notes in Computer Science, 2021, , 482-492.	1.0	5
226	Automated quantification of posterior vitreous inflammation: optical coherence tomography scan number requirements. Scientific Reports, 2021, 11, 3271.	1.6	5
227	Re-evaluating diabetic papillopathy using optical coherence tomography and inner retinal sublayer analysis. Eye, 2022, 36, 1476-1485.	1.1	5
228	Artificial Intelligence and Deep Learning in Ophthalmology. , 2022, , 1519-1552.		5
229	Anti-β2 Glycoprotein 1 and the Anti-phospholipid Syndrome. American Journal of Ophthalmology, 2006, 142, 701-702.	1.7	4
230	Diagnostic and Therapeutic Challenges. Retina, 2011, 31, 998-1003.	1.0	4
231	Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation. Journal of Ophthalmology, 2016, 2016, 1-6.	0.6	4
232	Instrument-based tests for quantifying aqueous humour protein levels in uveitis: a systematic review protocol. Systematic Reviews, 2019, 8, 287.	2.5	4
233	Characterizing Congenital Double Punctum Anomalies: Clinical, Endoscopic, and Imaging Findings. Ophthalmic Plastic and Reconstructive Surgery, 2019, 35, 549-552.	0.4	4
234	Automated Pupillometry Using a Prototype Binocular Optical Coherence Tomography System. American Journal of Ophthalmology, 2020, 214, 21-31.	1.7	4

1

#	Article	IF	CITATIONS
235	An open-source data set of anti-VEGF therapy in diabetic macular oedema patients over 4 years and their visual acuity outcomes. Eye, 2021, 35, 1354-1364.	1.1	4
236	FENETRE study: quality-assured follow-up of quiescent neovascular age-related macular degeneration by non-medical practitioners: study protocol and statistical analysis plan for a randomised controlled trial. BMJ Open, 2021, 11, e049411.	0.8	4
237	Stakeholder Perspectives on Clinical Decision Support Tools to Inform Clinical Artificial Intelligence Implementation: Protocol for a Framework Synthesis for Qualitative Evidence. JMIR Research Protocols, 2022, 11, e33145.	0.5	4
238	Artificial Intelligence and Imaging Processing in Optical Coherence Tomography and Digital Images in Uveitis. Ocular Immunology and Inflammation, 2022, , 1-7.	1.0	4
239	WIDEFIELD SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING OF PERIPHERAL ROUND RETINAL HOLES WITH OR WITHOUT RETINAL DETACHMENT. Retina, 2019, 39, 1047-1053.	1.0	3
240	Noninvasive Instrument-based Tests for Detecting and Measuring Vitreous Inflammation in Uveitis: A Systematic Review. Ocular Immunology and Inflammation, 2020, , 1-12.	1.0	3
241	Angiotensinâ€converting enzyme inhibitors and risk of ageâ€related macular degeneration in individuals with hypertension. British Journal of Clinical Pharmacology, 2022, , .	1.1	3
242	Diagnostic accuracy of code-free deep learning for detection and evaluation of posterior capsule opacification. BMJ Open Ophthalmology, 2022, 7, e000992.	0.8	3
243	OCT Interpretations. Ophthalmology, 2010, 117, 642-642.e1.	2.5	2
244	Microperimetry and Optical Coherence Tomography in Acute Macular Neuroretinopathy. Retinal Cases and Brief Reports, 2012, 6, 202-203.	0.3	2
245	"Black Holes―and the Ocular Glymphatic System: Author Response to "The Glymphatic System: A New Player in Ocular Diseases?― , 2016, 57, 5428.		2
246	Measuring Inflammation in the Vitreous and Retina: A Narrative Review. Ocular Immunology and Inflammation, 2023, 31, 768-777.	1.0	2
247	Artificial intelligence-based strategies to identify patient populations and advance analysis in age-related macular degeneration clinical trials. Experimental Eye Research, 2022, 220, 109092.	1.2	2
248	Advanced Imaging Technologies. , 2013, , 133-150.		1
249	When You Can Have the Bird Without Shooting It!: Extramacular Enhanced Depth Optical Coherence Tomography in Birdshot Chorioretinopathy—Reply. JAMA Ophthalmology, 2013, 131, 1369.	1.4	1
250	Measurement bias between optical coherence tomography instruments can affect access to treatment: a new lottery. Clinical Ophthalmology, 2013, 7, 2299.	0.9	1
251	Cloud-based genomics pipelines for ophthalmology: reviewed from research to clinical practice. Modeling and Artificial Intelligence in Ophthalmology, 2021, 3, 101-140.	0.1	1

252 Retinal fundus imaging with a plenoptic sensor. , 2018, , .

#	Article	IF	CITATIONS
253	A Hybrid Machine Learning Approach Using LBP Descriptor and PCA for Age-Related Macular Degeneration Classification in OCTA Images. Communications in Computer and Information Science, 2020, , 231-241.	0.4	1
254	A Linear Approach to Absolute Pose Estimation for Light Fields. , 2020, , .		1
255	The utility of wide-field optical coherence tomography angiography in diagnosis and monitoring of proliferative diabetic retinopathy in pregnancy. American Journal of Ophthalmology Case Reports, 2022, 25, 101280.	0.4	1
256	BILATERAL CENTRAL RETINAL VEIN OCCLUSION IN A YOUNG PERSON WITH STORM SYNDROME. Retinal Cases and Brief Reports, 2009, 3, 313-315.	0.3	0
257	Diagnostic and Therapeutic Challenges. Retina, 2011, 31, 994-997.	1.0	0
258	Diagnostic and Therapeutic Challenges. Retina, 2013, 33, 1273-1278.	1.0	0
259	Diagnostic and Therapeutic Challenges. Retina, 2015, 35, 374-377.	1.0	0
260	Reply. American Journal of Ophthalmology, 2015, 160, 204-205.	1.7	0
261	Correspondence. Retina, 2016, 36, e1.	1.0	0
262	Reply to choroidal thickness, correlations, and systemic disease. Survey of Ophthalmology, 2017, 62, 251-252.	1.7	0
263	Reply. Ophthalmology, 2017, 124, e56.	2.5	0
264	Addressing Commentator Concerns on Methods in a Study of Strabismus Using Binocular Optical Coherence Tomography. JAMA Ophthalmology, 2019, 137, 325.	1.4	0
265	Ellipsoid Zone Change According to Glaucoma-Stage Advancement. American Journal of Ophthalmology, 2019, 197, 183.	1.7	0
266	Automated Deep Learning for Medical Imaging. , 2021, , 1-13.		0
267	Master/slave: a better tool for Gabor filtering optical coherence tomography imaging instruments. , 2017, , .		0
268	Automated Deep Learning for Medical Imaging. , 2022, , 473-485.		0

Automated Deep Learning for Medical Imaging. , 2022, , 473-485. 268