Rashmi Kothary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6816636/publications.pdf

Version: 2024-02-01

166 6,956 49
papers citations h-index

49 79698 h-index g-index

174 174 all docs citations

174 times ranked 7068 citing authors

#	Article	IF	Citations
1	Curing SMA: Are we there yet?. Gene Therapy, 2023, 30, 8-17.	4.5	12
2	Survival motor neuron protein deficiency alters microglia reactivity. Glia, 2022, , .	4.9	7
3	Central and peripheral delivered AAV9-SMN are both efficient but target different pathomechanisms in a mouse model of spinal muscular atrophy. Gene Therapy, 2022, 29, 544-554.	4.5	6
4	<scp>MicroRNAs</scp> in oligodendrocyte development and remyelination. Journal of Neurochemistry, 2022, 162, 310-321.	3.9	10
5	264th ENMC International Workshop: Multi-system involvement in spinal muscular atrophy Hoofddorp, the Netherlands, November 19th – 21st 2021. Neuromuscular Disorders, 2022, 32, 697-705.	0.6	4
6	MiRNAâ€145â€5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. Journal of Cellular Physiology, 2021, 236, 997-1012.	4.1	13
7	SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 354-377.e3.	4.5	16
8	Metabolic Dysfunction in Spinal Muscular Atrophy. International Journal of Molecular Sciences, 2021, 22, 5913.	4.1	18
9	Dystonin loss-of-function leads to impaired autophagosome–endolysosome pathway dynamics. Biochemistry and Cell Biology, 2021, 99, 364-373.	2.0	4
10	Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia, 2020, 68, 859-877.	4.9	14
11	Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterology and Motility, 2020, 32, e13773.	3.0	0
12	Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine, 2020, 55, 102750.	6.1	17
13	Spinal muscular atrophy type III complicated by spinal superficial siderosis: a case report with molecular and neuropathological findings. Acta Neuropathologica Communications, 2020, 8, 188.	5.2	O
14	XIAP Protects Retinal Ganglion Cells in the Mutant ND4 Mouse Model of Leber Hereditary Optic Neuropathy., 2020, 61, 49.		7
15	Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Experimental Neurology, 2020, 334, 113454.	4.1	13
16	HSAN-VI. Neurology: Genetics, 2020, 6, e389.	1.9	10
17	Blood Flow to the Spleen is Altered in a Mouse Model of Spinal Muscular Atrophy. Journal of Neuromuscular Diseases, 2020, 7, 315-322.	2.6	8
18	Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2019, 6, 1519-1532.	3.7	72

#	Article	IF	CITATIONS
19	Pathologic Alterations in the Proteome of Synaptosomes from a Mouse Model of Spinal Muscular Atrophy. Journal of Proteome Research, 2019, 18, 3042-3051.	3.7	6
20	Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Frontiers in Molecular Neuroscience, 2019, 12, 243.	2.9	15
21	Low fat diets increase survival of a mouse model of spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2019, 6, 2340-2346.	3.7	10
22	Into the unknown. , 2019, , 27-52.		1
23	Impaired kidney structure and function in spinal muscular atrophy. Neurology: Genetics, 2019, 5, e353.	1.9	28
24	Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. European Journal of Medical Genetics, 2018, 61, 685-698.	1.3	28
25	Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe <i>dystonia musculorum</i> mouse model for hereditary sensory and autonomic neuropathy type VI. Human Molecular Genetics, 2018, 27, 3598-3611.	2.9	9
26	Surgical Artificial Insemination in Mice. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot092734.	0.3	0
27	Interventions Targeting Glucocorticoid-Krýppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine, 2018, 31, 226-242.	6.1	37
28	Oligodendrocyte development and CNS myelination are unaffected in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 2017, 26, ddw385.	2.9	9
29	Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Scientific Reports, 2017, 7, 13859.	3.3	13
30	New insights into SMA pathogenesis: immune dysfunction and neuroinflammation. Annals of Clinical and Translational Neurology, 2017, 4, 522-530.	3.7	35
31	Splicing arrays reveal novel RBM10 targets, including SMN2 pre-mRNA. BMC Molecular Biology, 2017, 18, 19.	3.0	28
32	Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Human Molecular Genetics, 2017, 26, ddw434.	2.9	44
33	Spinal Muscular Atrophy: More than a Disease of Motor Neurons?. Current Molecular Medicine, 2016, 16, 779-792.	1.3	75
34	Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS ONE, 2016, 11, e0149201.	2.5	6
35	Integrinâ€linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics. Journal of Neurochemistry, 2016, 136, 536-549.	3.9	12
36	Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Scientific Reports, 2016, 6, 22867.	3.3	39

#	Article	IF	CITATIONS
37	Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Reports, 2016, 17, 862-875.	6.4	39
38	Opening the window: The case for carrier and perinatal screening for spinal muscular atrophy. Neuromuscular Disorders, 2016, 26, 551-559.	0.6	12
39	Effect of genetic background on the phenotype of the <i>Smn^{2B/-}</i> muscular atrophy. Human Molecular Genetics, 2016, 25, ddw278.	2.9	46
40	Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Scientific Reports, 2016, 6, 28846.	3.3	24
41	A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neuroscience, 2016, 17, 7.	1.9	11
42	Functional and Genetic Analysis of Neuronal Isoforms of BPAG1. Methods in Enzymology, 2016, 569, 355-372.	1.0	8
43	Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn 2b/- mouse model of spinal muscular atrophy. Acta Neuropathologica Communications, 2015, 3, 55.	5. 2	61
44	Oligodendrocytes in a Nutshell. Frontiers in Cellular Neuroscience, 2015, 9, 340.	3.7	68
45	Disruption in the autophagic process underlies the sensory neuropathy in <i>dystonia musculorum</i> mice. Autophagy, 2015, 11, 1025-1036.	9.1	24
46	Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nature Communications, 2014, 5, 4181.	12.8	71
47	A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology, 2014, 468-470, 444-453.	2.4	3
48	Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Human Molecular Genetics, 2014, 23, 3432-3444.	2.9	55
49	Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 4249-4259.	2.9	59
50	Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI. Human Molecular Genetics, 2014, 23, 2694-2710.	2.9	38
51	Biochemical and Cellular Analysis of Human Variants of the DYT1 Dystonia Protein, TorsinA/TOR1A. Human Mutation, 2014, 35, 1101-1113.	2.5	25
52	Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis. Journal of Visualized Experiments, 2014, , e51162.	0.3	17
53	The Smn-Independent Beneficial Effects of Trichostatin A on an Intermediate Mouse Model of Spinal Muscular Atrophy. PLoS ONE, 2014, 9, e101225.	2.5	21
54	Supraphysiological expression of survival motor neuron protein from an adenovirus vector does not adversely affect cell function. Biochemistry and Cell Biology, 2013, 91, 252-264.	2.0	6

#	Article	IF	CITATIONS
55	Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skeletal Muscle, 2013, 3, 24.	4.2	53
56	Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Skeletal Muscle, 2013, 3, 16.	4.2	9
57	Defects in neuromuscular junction remodelling in the Smn2B/â^' mouse model of spinal muscular atrophy. Neurobiology of Disease, 2013, 49, 57-67.	4.4	59
58	Cellular and Molecular Biology ofÂNeuronal Dystonin. International Review of Cell and Molecular Biology, 2013, 300, 85-120.	3.2	50
59	A novel function for the survival motoneuron protein as a translational regulator. Human Molecular Genetics, 2013, 22, 668-684.	2.9	106
60	Integrin-Linked Kinase Regulates Process Extension in Oligodendrocytes via Control of Actin Cytoskeletal Dynamics. Journal of Neuroscience, 2013, 33, 9781-9793.	3.6	30
61	Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells. PLoS ONE, 2013, 8, e67762.	2.5	35
62	More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Frontiers in Physiology, 2013, 4, 356.	2.8	60
63	At the "Junction―of Spinal Muscular Atrophy Pathogenesis: The Role of Neuromuscular Junction Dysfunction in SMA Disease Progression. Current Molecular Medicine, 2013, 13, 1160-1174.	1.3	44
64	Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Molecular Biology of the Cell, 2012, 23, 553-566.	2.1	39
65	The Rb/E2F Pathway Modulates Neurogenesis through Direct Regulation of the Dlx1/Dlx2 Bigene Cluster. Journal of Neuroscience, 2012, 32, 8219-8230.	3.6	44
66	Untethering the Nuclear Envelope and Cytoskeleton: Biologically Distinct Dystonias Arising from a Common Cellular Dysfunction. International Journal of Cell Biology, 2012, 2012, 1-18.	2.5	23
67	Microtubule stability, Golgi organization, and transport flux require dystonin-a2–MAP1B interaction. Journal of Cell Biology, 2012, 196, 727-742.	5.2	60
68	A novel role for the cytoskeletal linker protein dystonin in the maintenance of microtubule stability and the regulation of ER-Golgi transport. Bioarchitecture, 2012, 2, 2-5.	1.5	20
69	A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromuscular Disorders, 2012, 22, 263-276.	0.6	116
70	Glucose metabolism and pancreatic defects in spinal muscular atrophy. Annals of Neurology, 2012, 72, 256-268.	5.3	134
71	A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skeletal Muscle, 2012, 2, 5.	4.2	43
72	Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Medicine, 2012, 10, 24.	5.5	103

#	Article	IF	CITATIONS
73	Microtubule stability, Golgi organization, and transport flux require dystoninâ€a2/MAP1B interaction. FASEB Journal, 2012, 26, .	0.5	O
74	MAP1B and Clathrin Are Novel Interacting Partners of the Giant Cyto-linker Dystonin. Journal of Proteome Research, 2011, 10, 5118-5127.	3.7	17
75	New Directions in Biology and Disease of Skeletal Muscle, Meeting Report, 5–8 May 2010, Ottawa, Canada. Neuromuscular Disorders, 2011, 21, 157-159.	0.6	2
76	Integrin Signaling in Oligodendrocytes and Its Importance in CNS Myelination. Journal of Signal Transduction, 2011, 2011, 1-11.	2.0	46
77	The Proteolipid Protein Promoter Drives Expression outside of the Oligodendrocyte Lineage during Embryonic and Early Postnatal Development. PLoS ONE, 2011, 6, e19772.	2.5	39
78	Derivation of Enriched Oligodendrocyte Cultures and Oligodendrocyte/Neuron Myelinating Co-cultures from Post-natal Murine Tissues. Journal of Visualized Experiments, 2011, , .	0.3	76
79	Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX. Virology, 2011, 420, 146-155.	2.4	9
80	The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skeletal Muscle, 2011, 1, 29.	4.2	117
81	Smn deficiency causes neuritogenesis and neurogenesis defects in the retinal neurons of a mouse model of spinal muscular atrophy. Developmental Neurobiology, 2011, 71, 153-169.	3.0	21
82	Wnt11 Promotes Cardiomyocyte Development by Caspase-Mediated Suppression of Canonical Wnt Signals. Molecular and Cellular Biology, 2011, 31, 163-178.	2.3	77
83	Biochemical, Proteomic, Structural, and Thermodynamic Characterizations of Integrin-linked Kinase (ILK). Journal of Biological Chemistry, 2011, 286, 21886-21895.	3.4	65
84	Motor Unit Abnormalities in Dystonia musculorum Mice. PLoS ONE, 2011, 6, e21093.	2.5	21
85	Intermediate Filament Interactions in Neurons. Advances in Neurobiology, 2011, , 379-410.	1.8	1
86	Mice with podocyte-specific overexpression of wild type \hat{l}_{\pm} -actinin-4 are healthy controls for K256E- \hat{l}_{\pm} -actinin-4 mutant transgenic mice. Transgenic Research, 2010, 19, 285-289.	2.4	12
87	Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgenic Research, 2010, 19, 1137-1144.	2.4	13
88	Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy. Journal of Neuroscience Research, 2010, 88, 111-122.	2.9	43
89	Hearts of Dystonia musculorum Mice Display Normal Morphological and Histological Features but Show Signs of Cardiac Stress. PLoS ONE, 2010, 5, e9465.	2.5	19
90	The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Human Molecular Genetics, 2010, 19, 1211-1220.	2.9	32

#	Article	lF	Citations
91	The many faces of SMN: deciphering the function critical to spinal muscular atrophy pathogenesis. Future Neurology, 2010, 5, 873-890.	0.5	22
92	Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Human Molecular Genetics, 2010, 19, 1468-1478.	2.9	147
93	Retargeting of Adenovirus Vectors through Genetic Fusion of a Single-Chain or Single-Domain Antibody to Capsid Protein IX. Journal of Virology, 2010, 84, 10074-10086.	3.4	40
94	Identification of Novel Interacting Protein Partners of SMN Using Tandem Affinity Purification. Journal of Proteome Research, 2010, 9, 1659-1669.	3.7	36
95	Mouse Survival Motor Neuron Alleles That Mimic SMN2 Splicing and Are Inducible Rescue Embryonic Lethality Early in Development but Not Late. PLoS ONE, 2010, 5, e15887.	2.5	71
96	Cdx2 regulation of posterior development through non-Hox targets. Development (Cambridge), 2009, 136, 4099-4110.	2.5	86
97	Bin1 Src Homology 3 Domain Acts as a Scaffold for Myofiber Sarcomere Assembly. Journal of Biological Chemistry, 2009, 284, 27674-27686.	3.4	29
98	The role of conserved water molecules in the catalytic domain of protein kinases. Proteins: Structure, Function and Bioinformatics, 2009, 76, 527-535.	2.6	47
99	SMN, profilin IIa and plastin 3: A link between the deregulation of actin dynamics and SMA pathogenesis. Molecular and Cellular Neurosciences, 2009, 42, 66-74.	2.2	106
100	Neurodevelopmental abnormalities in neurosphereâ€derived neural stem cells from SMNâ€depleted mice. Journal of Neuroscience Research, 2008, 86, 2839-2847.	2.9	33
101	Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons. Experimental Cell Research, 2008, 314, 2750-2761.	2.6	43
102	The number of nociceptors in the trigeminal ganglion but not proprioceptors in the mesencephalic trigeminal tract nucleus is reduced in dystonin deficient dystonia musculorum mice. Brain Research, 2008, 1226, 33-38.	2.2	5
103	A SMNÎ"7 read-through product confers functionality to the SMNÎ"7 protein. Neuroscience Letters, 2008, 442, 54-58.	2.1	34
104	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2007, 120, 200-200.	2.0	0
105	Re: "A Possible Cellular Mechanism of Neuronal Loss in the Dorsal Root Ganglia of Dystonia musculorum (dt) Mice" (1). Journal of Neuropathology and Experimental Neurology, 2007, 66, 248-249.	1.7	3
106	Conservation, Variability and the Modeling of Active Protein Kinases. PLoS ONE, 2007, 2, e982.	2.5	57
107	Dystonin/Bpag1—A link to what?. Cytoskeleton, 2007, 64, 897-905.	4.4	51
108	Dystonin deficiency reduces taste buds and fungiform papillae in the anterior part of the tongue. Brain Research, 2007, 1129, 142-146.	2.2	8

#	Article	IF	Citations
109	Smn Depletion Alters Profilin II Expression and Leads to Upregulation of the RhoA/ROCK Pathway and Defects in Neuronal Integrity. Journal of Molecular Neuroscience, 2007, 32, 120-131.	2.3	111
110	A Bpag1 isoform involved in cytoskeletal organization surrounding the nucleus. Experimental Cell Research, 2006, 312, 121-134.	2.6	45
111	The survival of vagal and glossopharyngeal sensory neurons is dependent upon dystonin. Neuroscience, 2006, 137, 531-536.	2.3	13
112	Trafficking of macromolecules and organelles in culturedDystonia musculorumsensory neurons is normal. Journal of Comparative Neurology, 2006, 494, 549-558.	1.6	12
113	Dominant-negative \hat{l}^21 integrin mice have region-specific myelin defects accompanied by alterations in MAPK activity. Glia, 2006, 53, 836-844.	4.9	50
114	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2006, 119, 4315-4321.	2.0	55
115	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2006, 119, 4367-4367.	2.0	0
116	The Mouse Dystrophin Muscle Promoter/Enhancer Drives Expression of Mini-dystrophin in Transgenic mdx Mice and Rescues the Dystrophy in These Mice. Molecular Therapy, 2006, 14, 724-734.	8.2	13
117	Spectrin repeat proteins in the nucleus. BioEssays, 2005, 27, 144-152.	2.5	52
118	Genetic alterations at the Bpag1 locus in dt mice and their impact on transcript expression. Mammalian Genome, 2005, 16, 909-917.	2.2	41
119	Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development (Cambridge), 2005, 132, 177-187.	2.5	176
120	Active Kinase Proteome Screening Reveals Novel Signal Complexity in Cardiomyopathy. Molecular and Cellular Proteomics, 2005, 4, 673-682.	3.8	10
121	Physiological Maturation of Photoreceptors Depends on the Voltage-Gated Sodium Channel NaV1.6 (Scn8a). Journal of Neuroscience, 2005, 25, 5046-5050.	3.6	13
122	Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. Journal of General Virology, 2005, 86, 2185-2196.	2.9	71
123	Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Experimental Cell Research, 2005, 311, 49-61.	2.6	96
124	A 1.3kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscular Disorders, 2005, 15, 437-449.	0.6	18
125	Reply to Davies. Neuromuscular Disorders, 2005, 15, 648-649.	0.6	0
126	The mouse dystrophin muscle enhancer-1 imparts skeletal muscle, but not cardiac muscle, expression onto the dystrophin Purkinje promoter in transgenic mice. Human Molecular Genetics, 2004, 13, 2853-2862.	2.9	6

#	Article	IF	Citations
127	Impaired fast axonal transport in neurons of the sciatic nerves from dystonia musculorum mice. Journal of Neurochemistry, 2003, 86, 564-571.	3.9	32
128	Transgenic Expression of the Activating Natural Killer Receptor Ly49H Confers Resistance to Cytomegalovirus in Genetically Susceptible Mice. Journal of Experimental Medicine, 2003, 197, 515-526.	8.5	114
129	Development of a Gene Therapy Strategy for the Restoration of Survival Motor Neuron Protein Expression: Implications for Spinal Muscular Atrophy Therapy. Human Gene Therapy, 2003, 14, 179-188.	2.7	32
130	Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus. Journal of Cell Science, 2003, 116, 4543-4555.	2.0	44
131	Neurodevelopmental defects resulting from ATRX overexpression in transgenic mice. Human Molecular Genetics, 2002, 11, 253-261.	2.9	58
132	SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2beta1. Human Molecular Genetics, 2002, 11, 577-587.	2.9	127
133	Differentiation potential of primary myogenic cells derived from skeletal muscle of dystonia musculorum mice. Differentiation, 2002, 70, 247-256.	1.9	7
134	Alterations in myelination in the central nervous system of dystonia musculorum mice. Journal of Neuroscience Research, 2002, 69, 233-242.	2.9	18
135	Mouse dystrophin enhancer preferentially targetslacZ expression in skeletal and cardiac muscle. Developmental Dynamics, 2002, 224, 30-38.	1.8	6
136	Characterization of transgene expression and Cre recombinase activity in a panel of Thy-1 promoter-Cre transgenic mice. Developmental Dynamics, 2002, 224, 135-143.	1.8	60
137	Modulation of α-ENaC and α ₁ -Na ⁺ -K ⁺ -ATPase by cAMP and dexamethasone in alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L217-L230.	2.9	89
138	Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival. Journal of Comparative Neurology, 2001, 432, 155-168.	1.6	23
139	Pathological and genetic analysis of the degenerating muscle (dmu) mouse: a new allele of Scn8a. Human Molecular Genetics, 2001, 10, 1819-1827.	2.9	19
140	Regulation of murine survival motor neuron (Smn) protein levels by modifying Smn exon 7 splicing. Human Molecular Genetics, 2001, 10, 2727-2736.	2.9	53
141	Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development. Developmental Dynamics, 2000, 219, 216-225.	1.8	52
142	An induction gene trap for identifying a homeoprotein-regulated locus. Nature Biotechnology, 2000, 18, 746-749.	17.5	34
143	The tkNeo Gene, but Not the pgkPuro Gene, Can Influence the Ability of the \hat{I}^2 -Globin LCR to Enhance and Confer Position-Independent Expression onto the \hat{I}^2 -Globin Gene. Experimental Cell Research, 2000, 260, 304-312.	2.6	7
144	MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Current Biology, 1999, 9, 1203-1206.	3.9	144

#	Article	IF	Citations
145	Dystonin-Deficient Mice Exhibit an Intrinsic Muscle Weakness and an Instability of Skeletal Muscle Cytoarchitecture. Developmental Biology, 1999, 210, 367-380.	2.0	67
146	Prenatal onset of Axonopathy in Dystonia musculorum mice., 1998, 22, 160-168.		35
147	Dystonin Is Essential for Maintaining Neuronal Cytoskeleton Organization. Molecular and Cellular Neurosciences, 1998, 10, 243-257.	2.2	103
148	Molecular cloning and characterization of murine. Differentiation, 1998, 63, 285.	1.9	9
149	Position effects in mice carrying a lacZ transgene in cis with the Â-globin LCR can be explained by a graded model. Nucleic Acids Research, 1997, 25, 4400-4407.	14.5	38
150	The $\hat{l}\pm$ Subunit of the Epithelial Sodium Channel in the Mouse: Developmental Regulation of Its Expression. Pediatric Research, 1997, 42, 327-334.	2.3	47
151	Cloning and Characterization of Mouse ACF7, a Novel Member of the Dystonin Subfamily of Actin Binding Proteins. Genomics, 1996, 38, 19-29.	2.9	76
152	Lung tumors in mice expressing an antisense RARÎ ² 2 transgene. FASEB Journal, 1996, 10, 1091-1097.	0.5	94
153	Tissue specific loss of proliferative capacity of parthenogenetic cells in fetal mouse chimeras. Roux's Archives of Developmental Biology, 1995, 204-204, 436-443.	1.2	6
154	The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genetics, 1995, 10, 301-306.	21.4	249
155	The Cytosolic Chaperonin Subunit TRiC-P5 Begins to Be Expressed at the Two-Cell Stage in Mouse Embryos. Biochemical and Biophysical Research Communications, 1995, 216, 279-283.	2.1	7
156	Cloning and Characterization of the Neural Isoforms of Human Dystonin. Genomics, 1995, 29, 777-780.	2.9	55
157	Dystonin transcripts are altered and their levels are reduced in the mouse neurological mutant dt24J. Biochemistry and Cell Biology, 1995, 73, 605-609.	2.0	14
158	Dystonin Expression in the Developing Nervous System Predominates in the Neurons That Degenerate indystonia musculorumMutant Mice. Molecular and Cellular Neurosciences, 1995, 6, 509-520.	2.2	55
159	Human homolog of a mouse sequence from the dystonia musculorum locus is on Chromosome 6p12. Mammalian Genome, 1994, 5, 434-437.	2.2	14
160	The Genomic Structure of an Insertional Mutation in the Dystonia Musculorum Locus. Genomics, 1994, 20, 371-376.	2.9	33
161	The Splotch mutation interferes with muscle development in the limbs. Anatomy and Embryology, 1993, 187, 153-60.	1.5	162
162	Characterization of the neural crest defect in Splotch (Sp1H) mutant mice using a lacZ transgene. Developmental Brain Research, 1993, 72, 99-105.	1.7	35

#	Article	IF	CITATIONS
163	Unusual cell specific expression of a major human cytomegalovirus immediate early gene promoter-lacZ hybrid gene in transgenic mouse embryos. Mechanisms of Development, 1991, 35, 25-31.	1.7	39
164	A sequence motif found in a <i>Drosophila</i> heterochromatin protein is conserved in animals and plants. Nucleic Acids Research, 1991, 19, 789-794.	14.5	288
165	Genome imprinting and development in the mouse. Development (Cambridge), 1990, 108, 89-98.	2.5	106
166	Cell-lineage-specific expression of the mouse hsp68 gene during embryogenesis. Developmental Biology, 1987, 121, 342-348.	2.0	41