
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6816636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A sequence motif found in a <i>Drosophila</i> heterochromatin protein is conserved in animals and plants. Nucleic Acids Research, 1991, 19, 789-794.	14.5	288
2	The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genetics, 1995, 10, 301-306.	21.4	249
3	Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development (Cambridge), 2005, 132, 177-187.	2.5	176
4	The Splotch mutation interferes with muscle development in the limbs. Anatomy and Embryology, 1993, 187, 153-60.	1.5	162
5	Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Human Molecular Genetics, 2010, 19, 1468-1478.	2.9	147
6	MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Current Biology, 1999, 9, 1203-1206.	3.9	144
7	Glucose metabolism and pancreatic defects in spinal muscular atrophy. Annals of Neurology, 2012, 72, 256-268.	5.3	134
8	SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2beta1. Human Molecular Genetics, 2002, 11, 577-587.	2.9	127
9	The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skeletal Muscle, 2011, 1, 29.	4.2	117
10	A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromuscular Disorders, 2012, 22, 263-276.	0.6	116
11	Transgenic Expression of the Activating Natural Killer Receptor Ly49H Confers Resistance to Cytomegalovirus in Genetically Susceptible Mice. Journal of Experimental Medicine, 2003, 197, 515-526.	8.5	114
12	Smn Depletion Alters Profilin II Expression and Leads to Upregulation of the RhoA/ROCK Pathway and Defects in Neuronal Integrity. Journal of Molecular Neuroscience, 2007, 32, 120-131.	2.3	111
13	SMN, profilin IIa and plastin 3: A link between the deregulation of actin dynamics and SMA pathogenesis. Molecular and Cellular Neurosciences, 2009, 42, 66-74.	2.2	106
14	A novel function for the survival motoneuron protein as a translational regulator. Human Molecular Genetics, 2013, 22, 668-684.	2.9	106
15	Genome imprinting and development in the mouse. Development (Cambridge), 1990, 108, 89-98.	2.5	106
16	Dystonin Is Essential for Maintaining Neuronal Cytoskeleton Organization. Molecular and Cellular Neurosciences, 1998, 10, 243-257.	2.2	103
17	Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Medicine, 2012, 10, 24.	5.5	103
18	Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. Experimental Cell Research, 2005, 311, 49-61.	2.6	96

#	Article	IF	CITATIONS
19	Lung tumors in mice expressing an antisense RARβ2 transgene. FASEB Journal, 1996, 10, 1091-1097.	0.5	94
20	Modulation of α-ENaC and α ₁ -Na ⁺ -K ⁺ -ATPase by cAMP and dexamethasone in alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L217-L230.	2.9	89
21	Cdx2 regulation of posterior development through non-Hox targets. Development (Cambridge), 2009, 136, 4099-4110.	2.5	86
22	Wnt11 Promotes Cardiomyocyte Development by Caspase-Mediated Suppression of Canonical Wnt Signals. Molecular and Cellular Biology, 2011, 31, 163-178.	2.3	77
23	Cloning and Characterization of Mouse ACF7, a Novel Member of the Dystonin Subfamily of Actin Binding Proteins. Genomics, 1996, 38, 19-29.	2.9	76
24	Derivation of Enriched Oligodendrocyte Cultures and Oligodendrocyte/Neuron Myelinating Co-cultures from Post-natal Murine Tissues. Journal of Visualized Experiments, 2011, , .	0.3	76
25	Spinal Muscular Atrophy: More than a Disease of Motor Neurons?. Current Molecular Medicine, 2016, 16, 779-792.	1.3	75
26	Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2019, 6, 1519-1532.	3.7	72
27	Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. Journal of General Virology, 2005, 86, 2185-2196.	2.9	71
28	Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nature Communications, 2014, 5, 4181.	12.8	71
29	Mouse Survival Motor Neuron Alleles That Mimic SMN2 Splicing and Are Inducible Rescue Embryonic Lethality Early in Development but Not Late. PLoS ONE, 2010, 5, e15887.	2.5	71
30	Oligodendrocytes in a Nutshell. Frontiers in Cellular Neuroscience, 2015, 9, 340.	3.7	68
31	Dystonin-Deficient Mice Exhibit an Intrinsic Muscle Weakness and an Instability of Skeletal Muscle Cytoarchitecture. Developmental Biology, 1999, 210, 367-380.	2.0	67
32	Biochemical, Proteomic, Structural, and Thermodynamic Characterizations of Integrin-linked Kinase (ILK). Journal of Biological Chemistry, 2011, 286, 21886-21895.	3.4	65
33	Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn 2b/- mouse model of spinal muscular atrophy. Acta Neuropathologica Communications, 2015, 3, 55.	5.2	61
34	Characterization of transgene expression and Cre recombinase activity in a panel of Thy-1 promoter-Cre transgenic mice. Developmental Dynamics, 2002, 224, 135-143.	1.8	60
35	Microtubule stability, Colgi organization, and transport flux require dystonin-a2–MAP1B interaction. Journal of Cell Biology, 2012, 196, 727-742.	5.2	60
36	More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Frontiers in Physiology, 2013, 4, 356.	2.8	60

#	Article	IF	CITATIONS
37	Defects in neuromuscular junction remodelling in the Smn2B/â^' mouse model of spinal muscular atrophy. Neurobiology of Disease, 2013, 49, 57-67.	4.4	59
38	Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 4249-4259.	2.9	59
39	Neurodevelopmental defects resulting from ATRX overexpression in transgenic mice. Human Molecular Genetics, 2002, 11, 253-261.	2.9	58
40	Conservation, Variability and the Modeling of Active Protein Kinases. PLoS ONE, 2007, 2, e982.	2.5	57
41	Cloning and Characterization of the Neural Isoforms of Human Dystonin. Genomics, 1995, 29, 777-780.	2.9	55
42	Dystonin Expression in the Developing Nervous System Predominates in the Neurons That Degenerate indystonia musculorumMutant Mice. Molecular and Cellular Neurosciences, 1995, 6, 509-520.	2.2	55
43	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2006, 119, 4315-4321.	2.0	55
44	Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Human Molecular Genetics, 2014, 23, 3432-3444.	2.9	55
45	Regulation of murine survival motor neuron (Smn) protein levels by modifying Smn exon 7 splicing. Human Molecular Genetics, 2001, 10, 2727-2736.	2.9	53
46	Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skeletal Muscle, 2013, 3, 24.	4.2	53
47	Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development. Developmental Dynamics, 2000, 219, 216-225.	1.8	52
48	Spectrin repeat proteins in the nucleus. BioEssays, 2005, 27, 144-152.	2.5	52
49	Dystonin/Bpag1—A link to what?. Cytoskeleton, 2007, 64, 897-905.	4.4	51
50	Dominant-negative β1 integrin mice have region-specific myelin defects accompanied by alterations in MAPK activity. Glia, 2006, 53, 836-844.	4.9	50
51	Cellular and Molecular Biology ofÂNeuronal Dystonin. International Review of Cell and Molecular Biology, 2013, 300, 85-120.	3.2	50
52	The role of conserved water molecules in the catalytic domain of protein kinases. Proteins: Structure, Function and Bioinformatics, 2009, 76, 527-535.	2.6	47
53	The α Subunit of the Epithelial Sodium Channel in the Mouse: Developmental Regulation of Its Expression. Pediatric Research, 1997, 42, 327-334.	2.3	47
54	Integrin Signaling in Oligodendrocytes and Its Importance in CNS Myelination. Journal of Signal Transduction, 2011, 2011, 1-11.	2.0	46

#	Article	IF	CITATIONS
55	Effect of genetic background on the phenotype of the <i>Smn^{2B/-}</i> mouse model of spinal muscular atrophy. Human Molecular Genetics, 2016, 25, ddw278.	2.9	46
56	A Bpag1 isoform involved in cytoskeletal organization surrounding the nucleus. Experimental Cell Research, 2006, 312, 121-134.	2.6	45
57	Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus. Journal of Cell Science, 2003, 116, 4543-4555.	2.0	44
58	The Rb/E2F Pathway Modulates Neurogenesis through Direct Regulation of the Dlx1/Dlx2 Bigene Cluster. Journal of Neuroscience, 2012, 32, 8219-8230.	3.6	44
59	Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Human Molecular Genetics, 2017, 26, ddw434.	2.9	44
60	At the "Junction―of Spinal Muscular Atrophy Pathogenesis: The Role of Neuromuscular Junction Dysfunction in SMA Disease Progression. Current Molecular Medicine, 2013, 13, 1160-1174.	1.3	44
61	Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons. Experimental Cell Research, 2008, 314, 2750-2761.	2.6	43
62	Neurodevelopmental consequences of Smn depletion in a mouse model of spinal muscular atrophy. Journal of Neuroscience Research, 2010, 88, 111-122.	2.9	43
63	A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skeletal Muscle, 2012, 2, 5.	4.2	43
64	Cell-lineage-specific expression of the mouse hsp68 gene during embryogenesis. Developmental Biology, 1987, 121, 342-348.	2.0	41
65	Genetic alterations at the Bpag1 locus in dt mice and their impact on transcript expression. Mammalian Genome, 2005, 16, 909-917.	2.2	41
66	Retargeting of Adenovirus Vectors through Genetic Fusion of a Single-Chain or Single-Domain Antibody to Capsid Protein IX. Journal of Virology, 2010, 84, 10074-10086.	3.4	40
67	Unusual cell specific expression of a major human cytomegalovirus immediate early gene promoter-lacZ hybrid gene in transgenic mouse embryos. Mechanisms of Development, 1991, 35, 25-31.	1.7	39
68	The Proteolipid Protein Promoter Drives Expression outside of the Oligodendrocyte Lineage during Embryonic and Early Postnatal Development. PLoS ONE, 2011, 6, e19772.	2.5	39
69	Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function. Molecular Biology of the Cell, 2012, 23, 553-566.	2.1	39
70	Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Scientific Reports, 2016, 6, 22867.	3.3	39
71	Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Reports, 2016, 17, 862-875.	6.4	39
72	Position effects in mice carrying a lacZ transgene in cis with the Â-globin LCR can be explained by a graded model. Nucleic Acids Research, 1997, 25, 4400-4407.	14.5	38

#	Article	lF	CITATIONS
73	Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI. Human Molecular Genetics, 2014, 23, 2694-2710.	2.9	38
74	Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine, 2018, 31, 226-242.	6.1	37
75	Identification of Novel Interacting Protein Partners of SMN Using Tandem Affinity Purification. Journal of Proteome Research, 2010, 9, 1659-1669.	3.7	36
76	Characterization of the neural crest defect in Splotch (Sp1H) mutant mice using a lacZ transgene. Developmental Brain Research, 1993, 72, 99-105.	1.7	35
77	Prenatal onset of Axonopathy inDystonia musculorum mice. , 1998, 22, 160-168.		35
78	Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells. PLoS ONE, 2013, 8, e67762.	2.5	35
79	New insights into SMA pathogenesis: immune dysfunction and neuroinflammation. Annals of Clinical and Translational Neurology, 2017, 4, 522-530.	3.7	35
80	An induction gene trap for identifying a homeoprotein-regulated locus. Nature Biotechnology, 2000, 18, 746-749.	17.5	34
81	A SMNΔ7 read-through product confers functionality to the SMNΔ7 protein. Neuroscience Letters, 2008, 442, 54-58.	2.1	34
82	The Genomic Structure of an Insertional Mutation in the Dystonia Musculorum Locus. Genomics, 1994, 20, 371-376.	2.9	33
83	Neurodevelopmental abnormalities in neurosphereâ€derived neural stem cells from SMNâ€depleted mice. Journal of Neuroscience Research, 2008, 86, 2839-2847.	2.9	33
84	Impaired fast axonal transport in neurons of the sciatic nerves from dystonia musculorum mice. Journal of Neurochemistry, 2003, 86, 564-571.	3.9	32
85	Development of a Gene Therapy Strategy for the Restoration of Survival Motor Neuron Protein Expression: Implications for Spinal Muscular Atrophy Therapy. Human Gene Therapy, 2003, 14, 179-188.	2.7	32
86	The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Human Molecular Genetics, 2010, 19, 1211-1220.	2.9	32
87	Integrin-Linked Kinase Regulates Process Extension in Oligodendrocytes via Control of Actin Cytoskeletal Dynamics. Journal of Neuroscience, 2013, 33, 9781-9793.	3.6	30
88	Bin1 Src Homology 3 Domain Acts as a Scaffold for Myofiber Sarcomere Assembly. Journal of Biological Chemistry, 2009, 284, 27674-27686.	3.4	29
89	Splicing arrays reveal novel RBM10 targets, including SMN2 pre-mRNA. BMC Molecular Biology, 2017, 18, 19.	3.0	28
90	Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. European Journal of Medical Genetics, 2018, 61, 685-698.	1.3	28

#	Article	IF	CITATIONS
91	Impaired kidney structure and function in spinal muscular atrophy. Neurology: Genetics, 2019, 5, e353.	1.9	28
92	Biochemical and Cellular Analysis of Human Variants of the DYT1 Dystonia Protein, TorsinA/TOR1A. Human Mutation, 2014, 35, 1101-1113.	2.5	25
93	Disruption in the autophagic process underlies the sensory neuropathy in <i>dystonia musculorum</i> mice. Autophagy, 2015, 11, 1025-1036.	9.1	24
94	Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Scientific Reports, 2016, 6, 28846.	3.3	24
95	Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival. Journal of Comparative Neurology, 2001, 432, 155-168.	1.6	23
96	Untethering the Nuclear Envelope and Cytoskeleton: Biologically Distinct Dystonias Arising from a Common Cellular Dysfunction. International Journal of Cell Biology, 2012, 2012, 1-18.	2.5	23
97	The many faces of SMN: deciphering the function critical to spinal muscular atrophy pathogenesis. Future Neurology, 2010, 5, 873-890.	0.5	22
98	Smn deficiency causes neuritogenesis and neurogenesis defects in the retinal neurons of a mouse model of spinal muscular atrophy. Developmental Neurobiology, 2011, 71, 153-169.	3.0	21
99	Motor Unit Abnormalities in Dystonia musculorum Mice. PLoS ONE, 2011, 6, e21093.	2.5	21
100	The Smn-Independent Beneficial Effects of Trichostatin A on an Intermediate Mouse Model of Spinal Muscular Atrophy. PLoS ONE, 2014, 9, e101225.	2.5	21
101	A novel role for the cytoskeletal linker protein dystonin in the maintenance of microtubule stability and the regulation of ER-Golgi transport. Bioarchitecture, 2012, 2, 2-5.	1.5	20
102	Pathological and genetic analysis of the degenerating muscle (dmu) mouse: a new allele of Scn8a. Human Molecular Genetics, 2001, 10, 1819-1827.	2.9	19
103	Hearts of Dystonia musculorum Mice Display Normal Morphological and Histological Features but Show Signs of Cardiac Stress. PLoS ONE, 2010, 5, e9465.	2.5	19
104	Alterations in myelination in the central nervous system of dystonia musculorum mice. Journal of Neuroscience Research, 2002, 69, 233-242.	2.9	18
105	A 1.3kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscular Disorders, 2005, 15, 437-449.	0.6	18
106	Metabolic Dysfunction in Spinal Muscular Atrophy. International Journal of Molecular Sciences, 2021, 22, 5913.	4.1	18
107	MAP1B and Clathrin Are Novel Interacting Partners of the Giant Cyto-linker Dystonin. Journal of Proteome Research, 2011, 10, 5118-5127.	3.7	17
108	Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis. Journal of Visualized Experiments, 2014, , e51162.	0.3	17

#	Article	IF	CITATIONS
109	Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine, 2020, 55, 102750.	6.1	17
110	SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 354-377.e3.	4.5	16
111	Snf2h Drives Chromatin Remodeling to Prime Upper Layer Cortical Neuron Development. Frontiers in Molecular Neuroscience, 2019, 12, 243.	2.9	15
112	Human homolog of a mouse sequence from the dystonia musculorum locus is on Chromosome 6p12. Mammalian Genome, 1994, 5, 434-437.	2.2	14
113	Dystonin transcripts are altered and their levels are reduced in the mouse neurological mutant dt24J. Biochemistry and Cell Biology, 1995, 73, 605-609.	2.0	14
114	Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia, 2020, 68, 859-877.	4.9	14
115	Physiological Maturation of Photoreceptors Depends on the Voltage-Gated Sodium Channel NaV1.6 (Scn8a). Journal of Neuroscience, 2005, 25, 5046-5050.	3.6	13
116	The survival of vagal and glossopharyngeal sensory neurons is dependent upon dystonin. Neuroscience, 2006, 137, 531-536.	2.3	13
117	The Mouse Dystrophin Muscle Promoter/Enhancer Drives Expression of Mini-dystrophin in Transgenic mdx Mice and Rescues the Dystrophy in These Mice. Molecular Therapy, 2006, 14, 724-734.	8.2	13
118	Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgenic Research, 2010, 19, 1137-1144.	2.4	13
119	Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Scientific Reports, 2017, 7, 13859.	3.3	13
120	Metformin promotes CNS remyelination and improves social interaction following focal demyelination through CBP Ser436 phosphorylation. Experimental Neurology, 2020, 334, 113454.	4.1	13
121	MiRNAâ€145â€5p prevents differentiation of oligodendrocyte progenitor cells by regulating expression of myelin gene regulatory factor. Journal of Cellular Physiology, 2021, 236, 997-1012.	4.1	13
122	Trafficking of macromolecules and organelles in culturedDystonia musculorumsensory neurons is normal. Journal of Comparative Neurology, 2006, 494, 549-558.	1.6	12
123	Mice with podocyte-specific overexpression of wild type α-actinin-4 are healthy controls for K256E-α-actinin-4 mutant transgenic mice. Transgenic Research, 2010, 19, 285-289.	2.4	12
124	Integrinâ€linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics. Journal of Neurochemistry, 2016, 136, 536-549.	3.9	12
125	Opening the window: The case for carrier and perinatal screening for spinal muscular atrophy. Neuromuscular Disorders, 2016, 26, 551-559.	0.6	12
126	Curing SMA: Are we there yet?. Gene Therapy, 2023, 30, 8-17.	4.5	12

8

#	Article	IF	CITATIONS
127	A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neuroscience, 2016, 17, 7.	1.9	11
128	Active Kinase Proteome Screening Reveals Novel Signal Complexity in Cardiomyopathy. Molecular and Cellular Proteomics, 2005, 4, 673-682.	3.8	10
129	Low fat diets increase survival of a mouse model of spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2019, 6, 2340-2346.	3.7	10
130	HSAN-VI. Neurology: Genetics, 2020, 6, e389.	1.9	10
131	<scp>MicroRNAs</scp> in oligodendrocyte development and remyelination. Journal of Neurochemistry, 2022, 162, 310-321.	3.9	10
132	Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX. Virology, 2011, 420, 146-155.	2.4	9
133	Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Skeletal Muscle, 2013, 3, 16.	4.2	9
134	Oligodendrocyte development and CNS myelination are unaffected in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 2017, 26, ddw385.	2.9	9
135	Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe <i>dystonia musculorum</i> mouse model for hereditary sensory and autonomic neuropathy type VI. Human Molecular Genetics, 2018, 27, 3598-3611.	2.9	9
136	Molecular cloning and characterization of murine. Differentiation, 1998, 63, 285.	1.9	9
137	Dystonin deficiency reduces taste buds and fungiform papillae in the anterior part of the tongue. Brain Research, 2007, 1129, 142-146.	2.2	8
138	Functional and Genetic Analysis of Neuronal Isoforms of BPAG1. Methods in Enzymology, 2016, 569, 355-372.	1.0	8
139	Blood Flow to the Spleen is Altered in a Mouse Model of Spinal Muscular Atrophy. Journal of Neuromuscular Diseases, 2020, 7, 315-322.	2.6	8
140	The Cytosolic Chaperonin Subunit TRiC-P5 Begins to Be Expressed at the Two-Cell Stage in Mouse Embryos. Biochemical and Biophysical Research Communications, 1995, 216, 279-283.	2.1	7
141	The tkNeo Gene, but Not the pgkPuro Gene, Can Influence the Ability of the β-Globin LCR to Enhance and Confer Position-Independent Expression onto the β-Globin Gene. Experimental Cell Research, 2000, 260, 304-312.	2.6	7
142	Differentiation potential of primary myogenic cells derived from skeletal muscle of dystonia musculorum mice. Differentiation, 2002, 70, 247-256.	1.9	7
143	XIAP Protects Retinal Ganglion Cells in the Mutant ND4 Mouse Model of Leber Hereditary Optic Neuropathy. , 2020, 61, 49.		7
144	Survival motor neuron protein deficiency alters microglia reactivity. Glia, 2022, , .	4.9	7

#	Article	IF	CITATIONS
145	Tissue specific loss of proliferative capacity of parthenogenetic cells in fetal mouse chimeras. Roux's Archives of Developmental Biology, 1995, 204-204, 436-443.	1.2	6
146	Mouse dystrophin enhancer preferentially targetslacZ expression in skeletal and cardiac muscle. Developmental Dynamics, 2002, 224, 30-38.	1.8	6
147	The mouse dystrophin muscle enhancer-1 imparts skeletal muscle, but not cardiac muscle, expression onto the dystrophin Purkinje promoter in transgenic mice. Human Molecular Genetics, 2004, 13, 2853-2862.	2.9	6
148	Supraphysiological expression of survival motor neuron protein from an adenovirus vector does not adversely affect cell function. Biochemistry and Cell Biology, 2013, 91, 252-264.	2.0	6
149	Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS ONE, 2016, 11, e0149201.	2.5	6
150	Pathologic Alterations in the Proteome of Synaptosomes from a Mouse Model of Spinal Muscular Atrophy. Journal of Proteome Research, 2019, 18, 3042-3051.	3.7	6
151	Central and peripheral delivered AAV9-SMN are both efficient but target different pathomechanisms in a mouse model of spinal muscular atrophy. Gene Therapy, 2022, 29, 544-554.	4.5	6
152	The number of nociceptors in the trigeminal ganglion but not proprioceptors in the mesencephalic trigeminal tract nucleus is reduced in dystonin deficient dystonia musculorum mice. Brain Research, 2008, 1226, 33-38.	2.2	5
153	Dystonin loss-of-function leads to impaired autophagosome–endolysosome pathway dynamics. Biochemistry and Cell Biology, 2021, 99, 364-373.	2.0	4
154	264th ENMC International Workshop: Multi-system involvement in spinal muscular atrophy Hoofddorp, the Netherlands, November 19th – 21st 2021. Neuromuscular Disorders, 2022, 32, 697-705.	0.6	4
155	Re: "A Possible Cellular Mechanism of Neuronal Loss in the Dorsal Root Ganglia of Dystonia musculorum (dt) Mice" (1). Journal of Neuropathology and Experimental Neurology, 2007, 66, 248-249.	1.7	3
156	A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology, 2014, 468-470, 444-453.	2.4	3
157	New Directions in Biology and Disease of Skeletal Muscle, Meeting Report, 5–8 May 2010, Ottawa, Canada. Neuromuscular Disorders, 2011, 21, 157-159.	0.6	2
158	Into the unknown. , 2019, , 27-52.		1
159	Intermediate Filament Interactions in Neurons. Advances in Neurobiology, 2011, , 379-410.	1.8	1
160	Reply to Davies. Neuromuscular Disorders, 2005, 15, 648-649.	0.6	0
161	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2006, 119, 4367-4367.	2.0	0
162	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2007, 120, 200-200.	2.0	0

#	Article	IF	CITATIONS
163	Surgical Artificial Insemination in Mice. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot092734.	0.3	0
164	Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterology and Motility, 2020, 32, e13773.	3.0	0
165	Spinal muscular atrophy type III complicated by spinal superficial siderosis: a case report with molecular and neuropathological findings. Acta Neuropathologica Communications, 2020, 8, 188.	5.2	0
166	Microtubule stability, Golgi organization, and transport flux require dystoninâ€a2/MAP1B interaction. FASEB Journal, 2012, 26, .	0.5	0