
Yinhua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681659/publications.pdf Version: 2024-02-01

Υινιμιλ Ζησιι

#	Article	IF	CITATIONS
1	A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012, 336, 327-332.	6.0	1,878
2	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	4.2	349
3	Recyclable organic solar cells on cellulose nanocrystal substrates. Scientific Reports, 2013, 3, 1536.	1.6	270
4	Enhanced Ion Conductivity in Conducting Polymer Binder for Highâ€Performance Silicon Anodes in Advanced Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702314.	10.2	258
5	A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency. Advanced Materials, 2018, 30, e1800855.	11.1	243
6	Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2018, 140, 1019-1027.	6.6	241
7	Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule, 2020, 4, 2646-2660.	11.7	218
8	Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule. Advanced Materials, 2018, 30, 1705786.	11.1	209
9	Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6597-6605.	5.2	188
10	High performance polymeric charge recombination layer for organic tandem solar cells. Energy and Environmental Science, 2012, 5, 9827.	15.6	183
11	Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO ₂ for nonfullerene organic solar cells. Materials Horizons, 2019, 6, 1438-1443.	6.4	182
12	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	4.2	157
13	An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nature Energy, 2022, 7, 352-359.	19.8	155
14	12.5% Flexible Nonfullerene Solar Cells by Passivating the Chemical Interaction Between the Active Layer and Polymer Interfacial Layer. Advanced Materials, 2019, 31, e1806616.	11.1	151
15	Inverted and transparent polymer solar cells prepared with vacuum-free processing. Solar Energy Materials and Solar Cells, 2009, 93, 497-500.	3.0	148
16	Investigation on polymer anode design for flexible polymer solar cells. Applied Physics Letters, 2008, 92, 233308.	1.5	142
17	Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nature Communications, 2020, 11, 4508.	5.8	141
18	A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, 2016, 4, 1208-1213.	5.2	139

Үілниа Zhou

#	Article	IF	CITATIONS
19	Free‣tanding Conducting Polymer Films for Highâ€Performance Energy Devices. Angewandte Chemie - International Edition, 2016, 55, 979-982.	7.2	138
20	Indium tin oxide-free and metal-free semitransparent organic solar cells. Applied Physics Letters, 2010, 97, .	1.5	135
21	A Vertically Integrated Solarâ€Powered Electrochromic Window for Energy Efficient Buildings. Advanced Materials, 2014, 26, 4895-4900.	11.1	134
22	Conductivity Enhancement of PEDOT:PSS Films via Phosphoric Acid Treatment for Flexible All-Plastic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14089-14094.	4.0	127
23	Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO ₂ layer. Journal of Materials Chemistry A, 2017, 5, 9402-9411.	5.2	127
24	Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. Nano Letters, 2016, 16, 7829-7835.	4.5	123
25	X-Shaped Oligothiophenes as a New Class of Electron Donors for Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry B, 2006, 110, 7702-7707.	1.2	118
26	Electrical and Optical Properties of ZnO Processed by Atomic Layer Deposition in Inverted Polymer Solar Cells. Journal of Physical Chemistry C, 2010, 114, 20713-20718.	1.5	116
27	Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nature Communications, 2019, 10, 878.	5.8	115
28	Chemical reaction between an ITIC electron acceptor and an amine-containing interfacial layer in non-fullerene solar cells. Journal of Materials Chemistry A, 2018, 6, 2273-2278.	5.2	113
29	Highly Stretchable Conductive Glue for Highâ€Performance Silicon Anodes in Advanced Lithiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1704858.	7.8	113
30	Flexible Allâ€Solutionâ€Processed Organic Solar Cells with Highâ€Performance Nonfullerene Active Layers. Advanced Materials, 2020, 32, e1907840.	11.1	110
31	Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Organic Electronics, 2014, 15, 661-666.	1.4	108
32	Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure. Physical Chemistry Chemical Physics, 2012, 14, 12014.	1.3	98
33	All-plastic solar cells with a high photovoltaic dynamic range. Journal of Materials Chemistry A, 2014, 2, 3492.	5.2	97
34	54 cm ² Largeâ€Area Flexible Organic Solar Modules with Efficiency Above 13%. Advanced Materials, 2021, 33, e2103017.	11.1	96
35	Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposition. Journal of Materials Chemistry, 2010, 20, 6189.	6.7	93
36	Synergistic Effect of PbI ₂ Passivation and Chlorine Inclusion Yielding High Openâ€Circuit Voltage Exceeding 1.15 V in Both Mesoscopic and Inverted Planar CH3NH ₃ PbI ₃ (Cl)â€Based Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 8119-8127.	7.8	93

#	Article	IF	CITATIONS
37	Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4â€ethylenedioxythiophene), and Applications in Solutionâ€Processed Photovoltaics. Advanced Functional Materials, 2020, 30, 2006213.	7.8	90
38	Highâ€Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials, 2018, 28, 1705409.	7.8	84
39	Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53, 160-167.	8.2	83
40	Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11.6%. Journal of Materials Chemistry A, 2019, 7, 1989-1995.	5.2	83
41	Development of polymer–fullerene solar cells. National Science Review, 2016, 3, 222-239.	4.6	78
42	Enhanced Chargeâ€Carrier Injection and Collection Via Lamination of Doped Polymer Layers pâ€Doped with a Solutionâ€Processible Molybdenum Complex. Advanced Functional Materials, 2014, 24, 2197-2204.	7.8	77
43	Universal Strategy To Reduce Noise Current for Sensitive Organic Photodetectors. ACS Applied Materials & Interfaces, 2017, 9, 9176-9183.	4.0	77
44	Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS Nano, 2018, 12, 4440-4452.	7.3	77
45	All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer. Organic Electronics, 2010, 11, 1327-1331.	1.4	76
46	Semitransparent Fully Air Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 17776-17781.	4.0	75
47	Flexible all-solution-processed all-plastic multijunction solar cells for powering electronic devices. Materials Horizons, 2016, 3, 452-459.	6.4	73
48	A Freeâ€Standing Highâ€Output Power Density Thermoelectric Device Based on Structureâ€Ordered PEDOT:PSS. Advanced Electronic Materials, 2018, 4, 1700496.	2.6	73
49	Synthesis of 4,7-Diphenyl-2,1,3-Benzothiadiazole-Based Copolymers and Their Photovoltaic Applications. Macromolecules, 2009, 42, 4977-4984.	2.2	72
50	Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer. ACS Applied Materials & Interfaces, 2018, 10, 14153-14159.	4.0	71
51	Efficient Perovskite Photovoltaicâ€Thermoelectric Hybrid Device. Advanced Energy Materials, 2018, 8, 1702937.	10.2	71
52	Optical properties and conductivity of PEDOT:PSS films treated by polyethylenimine solution for organic solar cells. Organic Electronics, 2015, 21, 144-148.	1.4	70
53	Lightâ€Soakingâ€Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Lowâ€Temperatureâ€Processed TiO ₂ Electronâ€Transport Layer. Advanced Materials, 2017, 29, 1604044.	11.1	68
54	Multifolded polymer solar cells on flexible substrates. Applied Physics Letters, 2008, 93, .	1.5	67

#	Article	IF	CITATIONS
55	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	2.5	67
56	Intralayer A-Site Compositional Engineering of Ruddlesden–Popper Perovskites for Thermostable and Efficient Solar Cells. ACS Energy Letters, 2019, 4, 1216-1224.	8.8	65
57	Low-Temperature-Processed Amorphous Bi ₂ S ₃ Film as an Inorganic Electron Transport Layer for Perovskite Solar Cells. ACS Photonics, 2016, 3, 2122-2128.	3.2	63
58	Reversible Chemical Reactivity of Non-Fullerene Acceptors for Organic Solar Cells under Acidic and Basic Environment. ACS Applied Energy Materials, 2019, 2, 7602-7608.	2.5	60
59	Optimization of a polymer top electrode for inverted semitransparent organic solar cells. Organic Electronics, 2011, 12, 827-831.	1.4	59
60	Low Work Function Surface Modifiers for Solutionâ€Processed Electronics: A Review. Advanced Materials Interfaces, 2018, 5, 1701404.	1.9	56
61	Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode. Optics Express, 2015, 23, A83.	1.7	53
62	Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14017-14024.	5.2	53
63	ITO-free large-area flexible organic solar cells with an embedded metal grid. Organic Electronics, 2015, 17, 349-354.	1.4	52
64	A ring-locking strategy to enhance the chemical and photochemical stability of A–D–A-type non-fullerene acceptors. Journal of Materials Chemistry A, 2021, 9, 1080-1088.	5.2	52
65	Synthesis and photophysical properties of triphenylamine-based dendrimers with 1,3,5-triphenylbenzene cores. Tetrahedron Letters, 2007, 48, 5877-5881.	0.7	51
66	Flexible large-area organic tandem solar cells with high defect tolerance and device yield. Journal of Materials Chemistry A, 2017, 5, 3186-3192.	5.2	51
67	A nonionic surfactant simultaneously enhancing wetting property and electrical conductivity of PEDOT:PSS for vacuum-free organic solar cells. Solar Energy Materials and Solar Cells, 2015, 137, 311-318.	3.0	48
68	Bifunctional Al ₂ O ₃ Interlayer Leads to Enhanced Open ircuit Voltage for Holeâ€Conductorâ€Free Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800002.	3.1	48
69	Oriented Growth of Al ₂ O ₃ :ZnO Nanolaminates for Use as Electron‧elective Electrodes in Inverted Polymer Solar Cells. Advanced Functional Materials, 2012, 22, 1531-1538.	7.8	47
70	Semitransparent, non-fullerene and flexible all-plastic solar cells. Polymer, 2016, 107, 108-112.	1.8	47
71	Novel donor–acceptor molecules as donors for bulk heterojunction solar cells. Synthetic Metals, 2007, 157, 502-507.	2.1	45
72	Efficiency enhancement of polymer solar cells by incorporating a self-assembled layer of silver name and solar Cells, 2011, 95, 3281-3286.	3.0	45

#	Article	IF	CITATIONS
73	Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy, 2015, 16, 301-309.	8.2	45
74	Reduction and oxidation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) induced by methylamine (CH ₃ NH ₂)-containing atmosphere for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4305-4311.	5.2	44
75	Donorâ^'Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2009, 113, 7882-7886.	1.5	43
76	Double-side responsive polymer near-infrared photodetectors with transfer-printed electrode. Journal of Materials Chemistry C, 2016, 4, 1414-1419.	2.7	43
77	High-performance all-small-molecule organic solar cells without interlayers. Energy and Environmental Science, 2021, 14, 3174-3183.	15.6	43
78	Largeâ€Area Organic Solar Modules with Efficiency Over 14%. Advanced Functional Materials, 2022, 32, .	7.8	43
79	Synthesis and photovoltaic properties of novel solution-processable triphenylamine-based dendrimers with sulfonyldibenzene cores. New Journal of Chemistry, 2009, 33, 2120.	1.4	42
80	Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells. Nano Energy, 2017, 38, 297-303.	8.2	42
81	Polyethylenimine Aqueous Solution: A Low-Cost and Environmentally Friendly Formulation to Produce Low-Work-Function Electrodes for Efficient Easy-to-Fabricate Organic Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22628-22633.	4.0	41
82	Ultra-thin bacterial cellulose/poly(ethylenedioxythiophene) nanofibers paper electrodes for all-solid-state flexible supercapacitors. Electrochimica Acta, 2018, 271, 624-631.	2.6	41
83	Significant Enhancement of Illumination Stability of Nonfullerene Organic Solar Cells via an Aqueous Polyethylenimine Modification. Journal of Physical Chemistry Letters, 2021, 12, 2607-2614.	2.1	41
84	Polymer solar cells with NiO hole-collecting interlayers processed by atomic layer deposition. Organic Electronics, 2013, 14, 2802-2808.	1.4	40
85	Hierarchical Dual caffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	1.9	40
86	Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 33899-33906.	4.0	40
87	An Amidineâ€Type nâ€Dopant for Solutionâ€Processed Fieldâ€Effect Transistors and Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1703254.	7.8	40
88	Organic Photovoltaic Cells with Stable Top Metal Electrodes Modified with Polyethylenimine. ACS Applied Materials & Interfaces, 2014, 6, 6202-6207.	4.0	39
89	A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chemical Communications, 2018, 54, 563-566.	2.2	39
90	Writable and patternable organic solar cells and modules inspired by an old Chinese calligraphy tradition. Materials Horizons, 2018, 5, 123-130.	6.4	39

#	Article	lF	CITATIONS
91	A low band gap donor–acceptor copolymer containing fluorene and benzothiadiazole units: synthesis and photovoltaic properties. New Journal of Chemistry, 2011, 35, 385-393.	1.4	38
92	Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrodeâ€Based Flexible Perovskite Solar Cells and the Suppression Method. Solar Rrl, 2018, 2, 1800118.	3.1	37
93	Freeâ€Standing Conducting Polymer Films for Highâ€Performance Energy Devices. Angewandte Chemie, 2016, 128, 991-994.	1.6	36
94	Regulation of the Polar Groups in n-Type Conjugated Polyelectrolytes as Electron Transfer Layer for Inverted Polymer Solar Cells. Macromolecules, 2018, 51, 8197-8204.	2.2	36
95	Emerging Chemistry in Enhancing the Chemical and Photochemical Stabilities of Fusedâ€Ring Electron Acceptors in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2106735.	7.8	36
96	Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells. Energy and Environmental Science, 2011, 4, 3456.	15.6	34
97	Studies of the optimization of recombination layers for inverted tandem polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 107, 51-55.	3.0	34
98	PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells. Organic Electronics, 2014, 15, 2593-2598.	1.4	33
99	On the interface reactions and stability of nonfullerene organic solar cells. Chemical Science, 2022, 13, 4714-4739.	3.7	32
100	High-Performance Organic Semiconducting Polymers by a Resonance-Assisted Hydrogen Bonding Approach. Chemistry of Materials, 2021, 33, 580-588.	3.2	31
101	Surface enhanced Raman scattering from a hierarchical substrate of micro/nanostructured silver. Journal of Raman Spectroscopy, 2006, 37, 755-761.	1.2	29
102	Enhanced Thermochemical Stability of CH ₃ NH ₃ PbI ₃ Perovskite Films on Zinc Oxides via New Precursors and Surface Engineering. ACS Applied Materials & Interfaces, 2017, 9, 26045-26051.	4.0	29
103	Influence of Substituent Groups on Chemical Reactivity Kinetics of Nonfullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 2307-2312.	1.5	29
104	Flexible and Transparent Organic–Inorganic Hybrid Thermoelectric Modules. ACS Applied Materials & Interfaces, 2018, 10, 26687-26693.	4.0	28
105	Cruciform oligo(phenylenevinylene) with a bipyridine bridge: synthesis, its rhenium(i) complex and photovoltaic properties. Chemical Communications, 2008, , 3912.	2.2	27
106	Synthesis and photovoltaic properties of poly(p â€phenylenevinylene) derivatives containing oxadiazole. Journal of Polymer Science Part A, 2009, 47, 1003-1012.	2.5	27
107	Synthesis and photovoltaic properties of lowâ€bandgap 4,7â€dithienâ€2â€ylâ€2,1,3â€benzothiadiazoleâ€based poly(heteroarylenevinylene)s. Journal of Polymer Science Part A, 2011, 49, 2715-2724.	2.5	26
108	Laminated Free Standing PEDOT:PSS Electrode for Solution Processed Integrated Photocapacitors via Hydrogenâ€Bond Interaction. Advanced Materials Interfaces, 2017, 4, 1700704.	1.9	26

#	Article	IF	CITATIONS
109	Dual functions of interface passivation and n-doping using 2,6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 17632-17639.	5.2	25
110	Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells. Science China Chemistry, 2018, 61, 127-134.	4.2	25
111	Ultrathin and Efficient Organic Photovoltaics with Enhanced Air Stability by Suppression of Zinc Element Diffusion. Advanced Science, 2022, 9, e2105288.	5.6	24
112	Fluorine-induced self-doping and spatial conformation in alcohol-soluble interlayers for highly-efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 423-433.	5.2	23
113	Flexible Perovskite Solar Cells via Surface-Confined Silver Nanoparticles on Transparent Polyimide Substrates. Polymers, 2019, 11, 427.	2.0	22
114	Effect of Wetting Surfactants on the Work Function of PEDOT:PSS for Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 3766-3772.	2.5	22
115	Inverted Tandem Polymer Solar Cells with Polyethylenimineâ€Modified MoO _X /Al ₂ O ₃ :ZnO Nanolaminate as the Charge Recombination Layers. Advanced Energy Materials, 2014, 4, 1400048.	10.2	21
116	Sn–N/Sn–O interaction improving electron collection in non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12218-12223.	2.7	21
117	Efficient nonfullerene organic solar cells with active layers fabricated by water transfer printing. Journal of Energy Chemistry, 2019, 37, 220-224.	7.1	20
118	Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode. Optics Express, 2010, 18, A506.	1.7	19
119	Exploring the Chemical Interaction between Diiodooctane and PEDOT-PSS Electrode for Metal Electrode-Free Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 3800-3805.	4.0	19
120	Effect of alkyl chain length on the photovoltaic performance of oligothiophene-based small molecules. Solar Energy Materials and Solar Cells, 2014, 130, 336-346.	3.0	17
121	Vacuum-free and metal electrode-free organic tandem solar cells. Applied Physics Letters, 2015, 106, .	1.5	17
122	Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption. ACS Photonics, 2017, 4, 1172-1177.	3.2	17
123	Lowâ€Workâ€Function PEDOT Formula as a Stable Interlayer and Cathode for Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2107250.	7.8	16
124	Spectrally dependent photocurrent generation in aggregated MEH-PPV:PPDI donor–acceptor blends. Solar Energy Materials and Solar Cells, 2007, 91, 1842-1848.	3.0	15
125	Incorporation of Hydrogen Molybdenum Bronze in Solutionâ€Processed Interconnecting Layer for Efficient Nonfullerene Tandem Organic Solar Cells. Solar Rrl, 2020, 4, 1900480.	3.1	15
126	Colorful flexible polymer tandem solar cells. Journal of Materials Chemistry C, 2017, 5, 7884-7889.	2.7	14

#	Article	IF	CITATIONS
127	10 cm ² nonfullerene solar cells with efficiency over 10% using H _x MoO ₃ -assisted growth of silver electrodes with a low threshold thickness of 4 nm. Journal of Materials Chemistry A, 2020, 8, 69-76.	5.2	14
128	Water Transfer Printing of Multilayered Nearâ€Infrared Organic Photodetectors. Advanced Optical Materials, 2022, 10, 2101837.	3.6	14
129	A two-step method combining electrodepositing and spin-coating for solar cell processing. Journal of Solid State Electrochemistry, 2010, 14, 1051-1056.	1.2	12
130	Patching defects in the active layer of large-area organic solar cells. Journal of Materials Chemistry A, 2018, 6, 5817-5824.	5.2	12
131	Enhancing Efficiency and Durability of Inverted Perovskite Solar Cells with Phenol/Unsaturated Carbon–Carbon Double Bond Dual-Functionalized Poly(3,4-ethylenedioxythiophene) Hole Extraction Layer. ACS Sustainable Chemistry and Engineering, 2019, 7, 961-968.	3.2	12
132	Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications. Journal of Materials Chemistry C, 2020, 8, 1571-1576.	2.7	12
133	New 4,7-dithienebenzothiadiazole derivatives with cyano-vinylene bonds: Synthesis, photophysics and photovoltaics. Synthetic Metals, 2009, 159, 1471-1477.	2.1	11
134	Inverted organic solar cells with polymer-modified fluorine-doped tin oxide as the electron-collecting electrode. Thin Solid Films, 2014, 554, 54-57.	0.8	11
135	Suppressing generation of iodine impurity <i>via</i> an amidine additive in perovskite solar cells. Chemical Communications, 2018, 54, 4704-4707.	2.2	11
136	Bathocuproine as a cathode interlayer for nonfullerene organic solar cells with efficiency over 17%. Journal of Materials Chemistry A, 2021, 9, 23269-23275.	5.2	11
137	Minimizing the Thickness of Ethoxylated Polyethylenimine to Produce Stable Lowâ€Work Function Interface for Nonfullerene Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000094.	2.8	11
138	Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells. Organic Electronics, 2018, 61, 113-118.	1.4	10
139	Morphological optimization by rational matching of the donor and acceptor boosts the efficiency of alkylsilyl fused ring-based polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4847-4854.	5.2	10
140	Efficient Electrical Doping of Organic Semiconductors Via an Orthogonal Liquid‣iquid Contact. Advanced Functional Materials, 2021, 31, 2009660.	7.8	10
141	Stacking Sequence and Acceptor Dependence of Photocurrent Spectra and Photovoltage in Organic Two-Junction Devices. ACS Applied Materials & Interfaces, 2017, 9, 24027-24034.	4.0	9
142	MoO <i>_x</i> /Au Schottkyâ€Gated Fieldâ€Effect Transistors and Their Fast Inverters. Advanced Electronic Materials, 2019, 5, 1900086.	2.6	9
143	Engineering an interfacial interaction to assist transfer printing of active layers for curved organic solar cells. Organic Electronics, 2021, 93, 106162.	1.4	9
144	A metal chelation strategy suppressing chemical reduction between PEDOT and polyethylenimine for a printable low-work function electrode in organic solar cells. Journal of Materials Chemistry A, 2021, 9, 3918-3924.	5.2	9

#	Article	IF	CITATIONS
145	Surface doping of non-fullerene photoactive layer by soluble polyoxometalate for printable organic solar cells. Chemical Communications, 2021, 57, 2689-2692.	2.2	8
146	Solution-processed solar-charging power units made of organic photovoltaic modules and asymmetric super-capacitors. Applied Physics Letters, 2021, 118, .	1.5	8
147	High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Frontiers of Optoelectronics, 2018, 11, 360-366.	1.9	7
148	Morphology and properties of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV): N,N′-bis(1-ethylpropyl)-3,4:9,10-perylene bis(tetracarboxyl diimide) (EP-PTC) based solar cells. Current Applied Physics, 2009, 9, 950-955.	1.1	6
149	Self-assembly monolayers manipulate the power conversion processes in organic photovoltaics. Journal of Power Sources, 2019, 409, 66-75.	4.0	6
150	Patterning of PEDOT-PSS via nanosecond laser ablation and acid treatment for organic solar cells. Organic Electronics, 2020, 87, 105954.	1.4	6
151	N-doping of fullerene using 1,3,5-trimethylhexahydro-1,3,5-triazine as an electron transport layer for nonfullerene organic solar cells. Sustainable Energy and Fuels, 2020, 4, 1984-1990.	2.5	6
152	Indium tin oxide modified by titanium dioxide nanoparticles dispersed in poly(N-vinylpyrrolidone) for use as an electron-collecting layer in organic solar cells with an inverted structure. Journal of Materials Research, 2013, 28, 535-540.	1.2	4
153	Marangoni Force Assisted Spreading and Printing of Nanometerâ€Thick Polymer Films for Ubiquitous Optoelectronic Devices. Advanced Materials Technologies, 2021, 6, 2100181.	3.0	4
154	Photostable squaraine dimers for organic solar cells with a high open circuit voltage exceeding 1.0ÂV. Dyes and Pigments, 2021, 194, 109633.	2.0	4
155	AÂNew Diazabenzo[<i>k</i>]fluorantheneâ€BasedÂDâ€A Conjugated Polymer Donor for Efficient Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200276.	2.0	4
156	Producing pâ€Doped Surface for Hole Transporting Layerâ€Free Nonfullerene Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200201.	2.0	3
157	Synthesis, photophysical and electroluminescent properties of donor–acceptor–donor molecules based on α-cinnamoyl cyclic ketene dithioacetals. Synthetic Metals, 2009, 159, 153-157.	2.1	2
158	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	2.7	2
159	Achieve Better Performance of Inverted Perovskite Solar Cells by Using the Fluorinated Polymer as the Electron Transporting Layer. ACS Applied Energy Materials, 0, , .	2.5	2
160	Polymer Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 45-108.	0.4	1
161	Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrode-Based Flexible Perovskite Solar Cells and the Suppression Method (Solar RRL 9â^•2018). Solar Rrl, 2018, 2, 1870207.	3.1	1