Gregory E Schwarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6816498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 2000, 403, 758-761.	13.7	969
2	Differences in Phosphorus and Nitrogen Delivery to The Gulf of Mexico from the Mississippi River Basin. Environmental Science & Technology, 2008, 42, 822-830.	4.6	727
3	Regional interpretation of water-quality monitoring data. Water Resources Research, 1997, 33, 2781-2798.	1.7	536
4	The Role of Headwater Streams in Downstream Water Quality ¹ . Journal of the American Water Resources Association, 2007, 43, 41-59.	1.0	475
5	Natural Background Concentrations of Nutrients in Streams and Rivers of the Conterminous United States. Environmental Science & Technology, 2003, 37, 3039-3047.	4.6	265
6	Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States1. Journal of the American Water Resources Association, 2011, 47, 891-915.	1.0	91
7	Incorporating Uncertainty Into the Ranking of SPARROW Model Nutrient Yields From Mississippi/Atchafalaya River Basin Watersheds ¹ . Journal of the American Water Resources Association, 2009, 45, 534-549.	1.0	78
8	How Hydrologic Connectivity Regulates Water Quality in River Corridors. Journal of the American Water Resources Association, 2019, 55, 369-381.	1.0	75
9	An evaluation of methods for estimating decadal stream loads. Journal of Hydrology, 2016, 542, 185-203.	2.3	73
10	Thresholds of lake and reservoir connectivity in river networks control nitrogen removal. Nature Communications, 2018, 9, 2779.	5.8	68
11	Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin. Environmental Science & Technology, 2016, 50, 6991-7000.	4.6	65
12	Dominance of organic nitrogen from headwater streams to large rivers across the conterminous United States. Global Biogeochemical Cycles, 2007, 21, .	1.9	56
13	Sources of Suspended‧ediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model ¹ . Journal of the American Water Resources Association, 2010, 46, 757-776.	1.0	56
14	A Multi-Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models1. Journal of the American Water Resources Association, 2011, 47, 933-949.	1.0	48
15	Toward Explaining Nitrogen and Phosphorus Trends in Chesapeake Bay Tributaries, 1992–2012. Journal of the American Water Resources Association, 2019, 55, 1149-1168.	1.0	48
16	Small Ponds in Headwater Catchments Are a Dominant Influence on Regional Nutrient and Sediment Budgets. Geophysical Research Letters, 2019, 46, 9669-9677.	1.5	45
17	Spatial Variability in Nutrient Transport by HUC 8, State, and Subbasin Based on Mississippi/Atchafalaya River Basin SPARROW Models. Journal of the American Water Resources Association, 2014, 50, 988-1009.	1.0	37
18	Atmospheric Nitrogen Flux from the Watersheds of Major Estuaries of the United States: An Application of the SPARROW Watershed Model. Coastal and Estuarine Studies, 2013, , 119-170.	0.4	31

GREGORY E SCHWARZ

#	Article	IF	CITATIONS
19	SOCIOECONOMIC IMPACTS OF CLIMATE CHANGE ON U.S. WATER SUPPLIES. Journal of the American Water Resources Association, 1999, 35, 1563-1583.	1.0	29
20	The supply and demand for pollution control: Evidence from wastewater treatment. Journal of Environmental Economics and Management, 1992, 23, 54-77.	2.1	28
21	Phosphorus and Nitrogen Transport in the Binational Great Lakes Basin Estimated Using SPARROW Watershed Models. Journal of the American Water Resources Association, 2019, 55, 1401-1424.	1.0	27
22	Regional regression models of watershed suspended-sediment discharge for the eastern United States. Journal of Hydrology, 2012, 472-473, 53-62.	2.3	22
23	The Regionalization of National-Scale SPARROW Models for Stream Nutrients1. Journal of the American Water Resources Association, 2011, 47, 1151-1172.	1.0	17
24	Comment on "ln-Stream Nitrogen Attenuation: Model-Aggregation Effects and Implications for Coastal Nitrogen Impacts― Environmental Science & Technology, 2006, 40, 2485-2486.	4.6	13
25	Local choice and wastewater treatment plant performance. Water Resources Research, 1993, 29, 1589-1600.	1.7	10
26	A Comparison of Load Estimates Using Total Suspended Solids and Suspended-Sediment Concentration Data. , 2001, , 1.		9
27	Low threshold for nitrogen concentration saturation in headwaters increases regional and coastal delivery. Environmental Research Letters, 2020, 15, 044018.	2.2	9
28	Seasonally dynamic nutrient modeling quantifies storage lags and time-varying reactivity across large river basins. Environmental Research Letters, 2021, 16, 095004.	2.2	9
29	Correction of stream quality trends for the effects of laboratory measurement bias. Water Resources Research, 1993, 29, 3821-3833.	1.7	8
30	Advances in Quantifying Streamflow Variability Across Continental Scales: 1. Identifying Natural and Anthropogenic Controlling Factors in the USA Using a Spatially Explicit Modeling Method. Water Resources Research, 2019, 55, 10893-10917.	1.7	7
31	Advances in Quantifying Streamflow Variability Across Continental Scales: 2. Improved Model Regionalization and Prediction Uncertainties Using Hierarchical Bayesian Methods. Water Resources Research, 2019, 55, 11061-11087.	1.7	6
32	Adapting a regional water-quality model for local application: A case study for Tennessee, USA. Environmental Modelling and Software, 2019, 115, 187-199.	1.9	5
33	Multivariate Models of Watershed Suspended Sediment Loads for the Eastern United States. , 2010, , .		3
34	Predicting Nearâ€Term Effects of Climate Change on Nitrogen Transport to Chesapeake Bay. Journal of the American Water Resources Association, 0, , .	1.0	3
35	Accounting for Temporal Variability of Streamflow in Estimates of Travel Time. Frontiers in Water, 2020, 2, .	1.0	1