Grégory Genta-Jouve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6816489/publications.pdf

Version: 2024-02-01

90 papers 1,865

279701 23 h-index 35 g-index

98 all docs 98 docs citations 98 times ranked 2764 citing authors

#	Article	IF	CITATIONS
1	Taste and Smell: A Unifying Chemosensory Theory. Quarterly Review of Biology, 2022, 97, 69-94.	0.0	12
2	Asperopiperazines A and B: Antimicrobial and Cytotoxic Dipeptides from a Tunicate-Derived Fungus Aspergillus sp. DY001. Marine Drugs, 2022, 20, 451.	2.2	5
3	Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches. Natural Product Reports, 2021, 38, 1967-1993.	5.2	78
4	Magnificines A and B, Antimicrobial Marine Alkaloids Featuring a Tetrahydrooxazolo[3,2-a]azepine-2,5(3H,6H)-dione Backbone from the Red Sea Sponge Negombata magnifica. Marine Drugs, 2021, 19, 214.	2.2	6
5	Untargeted Metabolomics Approach for the Discovery of Environment-Related Pyran-2-Ones Chemodiversity in a Marine-Sourced Penicillium restrictum. Marine Drugs, 2021, 19, 378.	2.2	6
6	Identification of Antagonistic Compounds between the Palm Tree Xylariale Endophytic Fungi and the Phytopathogen <i>Fusarium oxysporum</i> Journal of Agricultural and Food Chemistry, 2021, 69, 10893-10906.	2.4	6
7	Fusaripyridines A and B; Highly Oxygenated Antimicrobial Alkaloid Dimers Featuring an Unprecedented 1,4-Bis(2-hydroxy-1,2-dihydropyridin-2-yl)butane-2,3-dione Core from the Marine Fungus Fusarium sp. LY019. Marine Drugs, 2021, 19, 505.	2.2	10
8	Hygroline derivatives from Schizanthus tricolor and their anti-trypanosomatid and antiplasmodial activities. Phytochemistry, 2021, 192, 112957.	1.4	3
9	Marine natural products from zoantharians: bioactivity, biosynthesis, systematics, and ecological roles. Natural Product Reports, 2020, 37, 515-540.	5.2	17
10	Eumitrins C-E: Structurally diverse xanthone dimers from the vietnamese lichen Usnea baileyi. Fìtoterapìâ, 2020, 141, 104449.	1.1	11
11	Atypical Spirotetronate Polyketides Identified in the Underexplored Genus <i>Streptacidiphilus</i> Journal of Organic Chemistry, 2020, 85, 10648-10657.	1.7	10
12	Novel $\hat{l}\pm$ -Hydroxy \hat{l}^3 -Butenolides of Kelp Endophytes Disrupt Bacterial Cell-to-Cell Signaling. Frontiers in Marine Science, 2020, 7, .	1.2	10
13	In Silico Anticipation of Metabolic Pathways Extended to Organic Chemistry Reactions: A Case Study with Caffeine Alkaline Hydrolysis and The Origin of Camellimidazoles. Chemistry - A European Journal, 2020, 26, 12936-12940.	1.7	4
14	Lipid Annotation by Combination of UHPLC-HRMS (MS), Molecular Networking, and Retention Time Prediction: Application to a Lipidomic Study of In Vitro Models of Dry Eye Disease. Metabolites, 2020, 10, 225.	1.3	16
15	Futunamine, a Pyrrole–Imidazole Alkaloid from the Sponge <i>Stylissa</i> aff. <i>carteri</i> Collected off the Futuna Islands. Journal of Natural Products, 2020, 83, 2299-2304.	1.5	14
16	Cytotoxic and Anti-Inflammatory Effects of Ent-Kaurane Derivatives Isolated from the Alpine Plant Sideritis hyssopifolia. Molecules, 2020, 25, 589.	1.7	4
17	Total Synthesis of Tiacumicinâ€B: Implementing Hydrogen Bond Directed Acceptor Delivery for Highly Selective βâ€Glycosylations. Angewandte Chemie, 2020, 132, 6674-6678.	1.6	7
18	Total Synthesis of Tiacumicinâ€B: Implementing Hydrogen Bond Directed Acceptor Delivery for Highly Selective βâ€Glycosylations. Angewandte Chemie - International Edition, 2020, 59, 6612-6616.	7.2	22

#	Article	IF	Citations
19	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	5.2	92
20	CANPA: Computer-Assisted Natural Products Anticipation. Analytical Chemistry, 2019, 91, 11247-11252.	3.2	29
21	Bioactive Diketopiperazines and Nucleoside Derivatives from a Sponge-Derived Streptomyces Species. Marine Drugs, 2019, 17, 584.	2.2	19
22	C25 steroids from the marine mussel-derived fungus Penicillium ubiquetum MMS330. Phytochemistry Letters, 2019, 34, 18-24.	0.6	6
23	Bromotryptamine and Bromotyramine Derivatives from the Tropical Southwestern Pacific Sponge Narrabeena nigra. Marine Drugs, 2019, 17, 319.	2.2	9
24	Halogenated Tyrosine Derivatives from the Tropical Eastern Pacific Zoantharians Antipathozoanthus hickmani and Parazoanthus darwini. Journal of Natural Products, 2019, 82, 1354-1360.	1.5	10
25	Stereoselective Access to (E)-1,3-Enynes through Pd/Cu-Catalyzed Alkyne Hydrocarbation of Allenes. Organic Letters, 2019, 21, 3136-3141.	2.4	16
26	Further terpenoids from Euphorbia tirucalli. Fìtoterapìâ, 2019, 135, 44-51.	1,1	27
27	Structure Revision of Microginins 674 and 690 from the Cultured Cyanobacterium <i>Microcystis aeruginosa</i> . Journal of Natural Products, 2019, 82, 1040-1044.	1.5	3
28	Biosynthetic investigation of \hat{l}^3 -lactones in Sextonia rubra wood using in situ TOF-SIMS MS/MS imaging to localize and characterize biosynthetic intermediates. Scientific Reports, 2019, 9, 1928.	1.6	20
29	Treasures from the Deep: Characellides as Anti-Inflammatory Lipoglycotripeptides from the Sponge Characella pachastrelloides. Organic Letters, 2019, 21, 246-251.	2.4	12
30	Insights into the Biosynthesis of Cyclic Guanidine Alkaloids from Crambeidae Marine Sponges. Angewandte Chemie - International Edition, 2019, 58, 520-525.	7.2	11
31	Insights into the Biosynthesis of Cyclic Guanidine Alkaloids from Crambeidae Marine Sponges. Angewandte Chemie, 2019, 131, 530-535.	1.6	O
32	MetWork: a web server for natural products anticipation. Bioinformatics, 2019, 35, 1795-1796.	1.8	35
33	Resolving the (19 <i>R</i>) Absolute Configuration of Lanciferine, a Monoterpene Indole Alkaloid from <i>Alstonia boulindaensis</i>) Journal of Natural Products, 2018, 81, 1075-1078.	1.5	11
34	A Ringâ€Distortion Strategy from Marine Natural Product Ilimaquinone Leads to Quorum Sensing Modulators. European Journal of Organic Chemistry, 2018, 2018, 2486-2497.	1.2	11
35	Palladium Nanoparticle-Catalyzed Stereoretentive Cross-Coupling of Alkenyl Sulfides with Grignard Reagents. Organic Letters, 2018, 20, 1430-1434.	2.4	16
36	Study of the Construction of the Tiacumicin B Aglycone. Journal of Organic Chemistry, 2018, 83, 921-929.	1.7	20

#	Article	IF	Citations
37	Sanctis A–C: Three Racemic Procyanidin Analogues from The Lichen <i>Parmotrema sanctiâ€angelii</i> Luropean Journal of Organic Chemistry, 2018, 2018, 2247-2253.	1.2	29
38	Griseofamines A and B: Two Indole-Tetramic Acid Alkaloids with 6/5/6/5 and 6/5/7/5 Ring Systems from <i>Penicillium griseofulvum</i> . Organic Letters, 2018, 20, 2046-2050.	2.4	23
39	Stereochemical Study of Puna'auic Acid, an Allenic Fatty Acid from the Eastern Indo-Pacific Cyanobacterium <i>Pseudanabaena</i>) sp. Organic Letters, 2018, 20, 2311-2314.	2.4	15
40	Callyspongidic Acids: Amphiphilic Diacids from the Tropical Eastern Pacific Sponge Callyspongia cf. californica. Journal of Natural Products, 2018, 81, 2301-2305.	1.5	8
41	A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data. Statistical Applications in Genetics and Molecular Biology, 2018, 17, .	0.2	5
42	Anti-inflammatory and antiproliferative diterpenoids from Plectranthus scutellarioides. Phytochemistry, 2018, 154, 39-46.	1.4	27
43	Tsavoenones A–C: unprecedented polyketides with a 1,7-dioxadispiro[4.0.4.4]tetradecane core from the lichen <i>Parmotrema tsavoense</i> . Organic and Biomolecular Chemistry, 2018, 16, 5913-5919.	1.5	26
44	Ecdysonelactones, Ecdysteroids from the Tropical Eastern Pacific Zoantharian Antipathozoanthus hickmani. Marine Drugs, 2018, 16, 58.	2.2	8
45	MS/MS-Guided Isolation of Clarinoside, a New Anti-Inflammatory Pentalogin Derivative. Molecules, 2018, 23, 1237.	1.7	7
46	Mucorolactone, a Macrolactone from <i>Mucor</i> sp. SNB-VECD13A, a Fungus Isolated from the Cuticle of a Vespidae Species. Organic Letters, 2018, 20, 3780-3783.	2.4	7
47	Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Current Opinion in Chemical Biology, 2017, 36, 40-49.	2.8	91
48	Terrazoanthines, 2-Aminoimidazole Alkaloids from the Tropical Eastern Pacific Zoantharian <i>Terrazoanthus onoi</i> . Organic Letters, 2017, 19, 1558-1561.	2.4	19
49	Antiplasmodial Securinega alkaloids from Phyllanthus fraternus: Discovery of natural (+)-allonorsecurinine. Tetrahedron Letters, 2017, 58, 3754-3756.	0.7	19
50	Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks. ACS Chemical Biology, 2017, 12, 2644-2651.	1.6	112
51	Synthesis of a Tiacumicin B Protected Aglycone. Organic Letters, 2017, 19, 4006-4009.	2.4	33
52	A Reactive Eremophilane and Its Antibacterial $2(1H)$ -Naphthalenone Rearrangement Product, Witnesses of a Microbial Chemical Warfare. Organic Letters, 2017, 19, 4038-4041.	2.4	20
53	A Nitrile Glucoside and Biflavones from the Leaves of <i>Campylospermum excavatum</i> (Ochnaceae). Chemistry and Biodiversity, 2017, 14, e1700241.	1.0	9
54	Pleiokomenines A and B: Dimeric Aspidofractinine Alkaloids Tethered with a Methylene Group. Organic Letters, 2017, 19, 6180-6183.	2.4	17

#	Article	IF	Citations
55	Targeted Isolation of Monoterpene Indole Alkaloids from <i>Palicourea sessilis</i> Natural Products, 2017, 80, 3032-3037.	1.5	31
56	Three new trixane glycosides obtained from the leaves of <i>Jungia sellowii</i> Less. using centrifugal partition chromatography. Beilstein Journal of Organic Chemistry, 2016, 12, 674-683.	1.3	13
57	Antimicrobial Oligophenalenone Dimers from the Soil Fungus <i>Talaromyces stipitatus</i> . Journal of Natural Products, 2016, 79, 2991-2996.	1.5	27
58	Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Scientific Reports, 2016, 6, 18637.	1.6	47
59	Gersemiols A–C and Eunicellol A, Diterpenoids from the Arctic Soft Coral <i>Gersemia fruticosa</i> Journal of Natural Products, 2016, 79, 1132-1136.	1.5	17
60	Talaroketals A and B, unusual bis(oxaphenalenone) spiro and fused ketals from the soil fungus Talaromyces stipitatus ATCC 10500. Organic and Biomolecular Chemistry, 2016, 14, 2691-2697.	1.5	14
61	Metabolomic profiling reveals deep chemical divergence between two morphotypes of the zoanthid Parazoanthus axinellae. Scientific Reports, 2015, 5, 8282.	1.6	29
62	Cymoside, a monoterpene indole alkaloid with a hexacyclic fused skeleton from Chimarrhis cymosa. Tetrahedron Letters, 2015, 56, 5377-5380.	0.7	16
63	Cystophloroketals A–E, Unusual Phloroglucinol–Meroterpenoid Hybrids from the Brown Alga <i>Cystoseira tamariscifolia</i> . Journal of Natural Products, 2015, 78, 1663-1670.	1.5	27
64	Eryloside W, a triterpenoid saponin from the sponge Dictyonella marsilii. Phytochemistry Letters, 2015, 13, 252-255.	0.6	9
65	MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis. Bioinformatics, 2015, 31, 975-977.	1.8	17
66	Gambierone, a Ladder-Shaped Polyether from the Dinoflagellate <i>Gambierdiscus belizeanus</i> Organic Letters, 2015, 17, 2392-2395.	2.4	60
67	Chiroptical study and absolute configuration of securinine oxidation products. Natural Product Research, 2015, 29, 1235-1242.	1.0	3
68	Unexpected talaroenamine derivatives and an undescribed polyester from the fungus Talaromyces stipitatus ATCC10500. Phytochemistry, 2015, 119, 70-75.	1.4	10
69	Metabolome Consistency: Additional Parazoanthines from the Mediterranean Zoanthid Parazoanthus Axinellae. Metabolites, 2014, 4, 421-432.	1.3	24
70	Rapid Identification of Antioxidant Compounds of Genista saharae Coss. & DPPH Scavenging Assay and HPTLC-MS. Molecules, 2014, 19, 4369-4379.	1.7	25
71	Mahorones, Highly Brominated Cyclopentenones from the Red Alga <i>Asparagopsis taxiformis</i> Journal of Natural Products, 2014, 77, 1150-1155.	1.5	40
72	Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe. Science of the Total Environment, 2014, 475, 71-82.	3.9	15

#	Article	lF	Citations
73	Comparative LC–MS-based metabolite profiling of the ancient tropical rainforest tree Symphonia globulifera. Phytochemistry, 2014, 108, 102-108.	1.4	13
74	Two-dimensional ultra high pressure liquid chromatography quadrupole/time-of-flight mass spectrometry for semi-targeted natural compounds identification. Phytochemistry Letters, 2014, 10, 318-323.	0.6	8
75	Autumnalamide, a Prenylated Cyclic Peptide from the Cyanobacterium <i>Phormidium autumnale</i> , Acts on SH-SY5Y Cells at the Mitochondrial Level. Journal of Natural Products, 2014, 77, 2196-2205.	1.5	9
76	Development of a work-flow for high-performance thin-layer chromatography data processing for untargeted metabolomics. Journal of Planar Chromatography - Modern TLC, 2014, 27, 328-332.	0.6	8
77	Biosynthesis in marine sponges: the radiolabelling strikes back. Phytochemistry Reviews, 2013, 12, 425-434.	3.1	9
78	Revising the Absolute Configurations of Coatlines via Density Functional Theory Calculations of Electronic Circular Dichroism Spectra. Chirality, 2013, 25, 180-184.	1.3	16
79	Packaging and Delivery of Chemical Weapons: A Defensive Trojan Horse Stratagem in Chromodorid Nudibranchs. PLoS ONE, 2013, 8, e62075.	1.1	37
80	Absolute Configuration of the New 3-epi-cladocroic Acid from the Mediterranean Sponge Haliclona fulva. Metabolites, 2013, 3, 24-32.	1.3	5
81	Sponge Chemical Diversity. Advances in Marine Biology, 2012, 62, 183-230.	0.7	14
82	Determination of the absolute configuration and evaluation of the in vitro antitumor activity of dilospirane B. Phytochemistry Letters, 2012, 5, 747-751.	0.6	6
83	Additional bioactive guanidine alkaloids from the Mediterranean sponge Crambe crambe. RSC Advances, 2012, 2, 2828.	1.7	47
84	Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges. Chemosphere, 2012, 89, 340-349.	4.2	23
85	Structure elucidation of the new citharoxazole from the Mediterranean deepâ€sea sponge <i>Latrunculia (Biannulata) citharistae</i> Magnetic Resonance in Chemistry, 2011, 49, 533-536.	1.1	13
86	New Insight into Marine Alkaloid Metabolic Pathways: Revisiting Oroidin Biosynthesis. ChemBioChem, 2011, 12, 2298-2301.	1.3	35
87	Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron, 2011, 67, 1011-1018.	1.0	23
88	Njaoaminiums A, B, and C: Cyclic 3-Alkylpyridinium Salts from the Marine Sponge Reniera sp Molecules, 2009, 14, 4716-4724.	1.7	15
89	Parazoanthines Aâ^'E, Hydantoin Alkaloids from the Mediterranean Sea Anemone <i>Parazoanthus axinellae</i> . Journal of Natural Products, 2009, 72, 1612-1615.	1.5	66
90	Steroidal glycosides from the marine sponge Pandaros acanthifolium. Steroids, 2009, 74, 746-750.	0.8	20