Jinhua Ye

List of Publications by Citations

Source: https://exaly.com/author-pdf/681573/jinhua-ye-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

653	52,198	113	207
papers	citations	h-index	g-index
709	59,031 ext. citations	8.9	8.08
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
653	Nano-photocatalytic materials: possibilities and challenges. <i>Advanced Materials</i> , 2012 , 24, 229-51	24	2967
652	Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. <i>Nature</i> , 2001 , 414, 625-7	50.4	2760
651	An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials, 2010 , 9, 559-64	27	1648
650	Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6490-2	16.4	1156
649	Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6294-5	16.4	1014
648	MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. <i>ACS Nano</i> , 2014 , 8, 7078-87	16.7	772
647	Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4463-6	16.4	674
646	State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. <i>Advanced Functional Materials</i> , 2015 , 25, 998-1013	15.6	582
645	Hierarchical WO3 Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. <i>Advanced Functional Materials</i> , 2008 , 18, 1922-1928	15.6	504
644	Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 10071-5	3.6	486
643	Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1701343	21.8	485
642	Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. <i>Chemical Communications</i> , 2010 , 46, 1893-5	5.8	458
641	Photocatalytic Decomposition of Organic Contaminants by Bi2WO6 Under Visible Light Irradiation. <i>Catalysis Letters</i> , 2004 , 92, 53-56	2.8	453
640	Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14310-14314	16.4	450
639	Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5766	13	429
638	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct pl Homojunctions for Enhanced Photocatalytic Hydrogen Production. <i>Advanced Functional Materials</i> , 2016 , 26, 6822-6829	15.6	429
637	Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2395-9	16.4	423

636	Targeted Synthesis of 2H- and 1T-Phase MoS Monolayers for Catalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 10033-10041	24	415
635	Light-Switchable Oxygen Vacancies in Ultrafine Bi O Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water. <i>Advanced Materials</i> , 2017 , 29, 1701774	24	392
634	Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. <i>ACS Nano</i> , 2016 , 10, 684-94	16.7	371
633	Recent advances in TiO2-based photocatalysis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12642	13	371
632	Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. <i>Energy and Environmental Science</i> , 2011 , 4, 4517	35.4	371
631	Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. <i>Chemical Society Reviews</i> , 2015 , 44, 7808-28	58.5	344
630	Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal Drganic Framework for Enhanced Photocatalytic CO2 Reduction. <i>Advanced Functional Materials</i> , 2015 , 25, 5360-5367	15.6	344
629	Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis. <i>Advanced Materials</i> , 2016 , 28, 6781-80	34	322
628	Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-CN Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13289-	13297	294
627	Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. Journal of Physical Chemistry B, 2006 , 110, 15824-30	3.4	291
626	An Amine-Functionalized Iron(III) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction. <i>Advanced Science</i> , 2015 , 2, 1500006	13.6	289
625	Photophysical and Photocatalytic Properties of AgInW2O8. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 14265-14269	3.4	289
624	In situ growth of metal particles on 3D urchin-like WO3 nanostructures. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6508-11	16.4	287
623	Surface-alkalinization-induced enhancement of photocatalytic H2 evolution over SrTiO3-based photocatalysts. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1974-7	16.4	287
622	Photothermal conversion of COlinto CHiwith Hibver Group VIII nanocatalysts: an alternative approach for solar fuel production. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11478-82	16.4	275
621	Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2724-5	16.4	274
620	Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9128-36	16.4	269
619	Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6575		257

618	Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. <i>Chemical Communications</i> , 2012 , 48, 3748-50	5.8	256
617	Effects of Substituting Sr2+ and Ba2+ for Ca2+on the Structural Properties and Photocatalytic Behaviors of CaIn2O4. <i>Chemistry of Materials</i> , 2004 , 16, 1644-1649	9.6	255
616	₩gAl(1-x)Ga(x)O2 solid-solution photocatalysts: continuous modulation of electronic structure toward high-performance visible-light photoactivity. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7757-63	16.4	248
615	Metal-organic frameworks for photocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 7563-72	3.6	244
614	Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. <i>Science and Technology of Advanced Materials</i> , 2011 , 12, 034401	7.1	242
613	Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. <i>ACS Nano</i> , 2011 , 5, 4310-8	16.7	236
612	Superconducting PrBa2Cu3Ox. Physical Review Letters, 1998, 80, 1074-1077	7.4	232
611	Photoassisted Construction of Holey Defective g-C N Photocatalysts for Efficient Visible-Light-Driven H O Production. <i>Small</i> , 2018 , 14, 1703142	11	231
610	Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers. <i>Advanced Materials</i> , 2016 , 28, 3703-10	24	227
609	Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. <i>Chemistry - A European Journal</i> , 2011 , 17, 5145-54	4.8	224
608	Transition Metal Disulfides as Noble-Metal-Alternative Co-Catalysts for Solar Hydrogen Production. <i>Advanced Energy Materials</i> , 2016 , 6, 1502555	21.8	223
607	Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H2 Evolution. <i>Chemistry of Materials</i> , 2013 , 25, 405-411	9.6	222
606	Nature-Inspired Environmental "Phosphorylation" Boosts Photocatalytic H2 Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13561-5	16.4	222
605	Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6689-93	16.4	219
604	A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. <i>Applied Catalysis B: Environmental</i> , 2017 , 204, 335-345	21.8	217
603	Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. <i>Journal of Chemical Physics</i> , 2002 , 117, 7313-7318	3.9	214
602	The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7621-7628	3.8	213
601	Self-doped SrTiO3Iphotocatalyst with enhanced activity for artificial photosynthesis under visible light. <i>Energy and Environmental Science</i> , 2011 , 4, 4211	35.4	211

(2007-2013)

60	00	Facet engineered Ag3PO4 for efficient water photooxidation. <i>Energy and Environmental Science</i> , 2013 , 6, 3380	35.4	208	
59	99	A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. <i>Chemical Physics Letters</i> , 2002 , 356, 221-226	2.5	203	
59	98	In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. <i>Chemical Communications</i> , 2009 , 6551-3	5.8	198	
59	97	Drastic Layer-Number-Dependent Activity Enhancement in Photocatalytic H2 Evolution over nMoS2/CdS (n 🗓) Under Visible Light. <i>Advanced Energy Materials</i> , 2015 , 5, 1402279	21.8	197	
59	96	Engineering coordination polymers for photocatalysis. <i>Nano Energy</i> , 2016 , 22, 149-168	17.1	197	
59	95	Hematite Films Decorated with Nanostructured Ferric Oxyhydroxide as Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. <i>Advanced Functional Materials</i> , 2015 , 25, 2686-2692	15.6	193	
59	94	In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible-light irradiation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2943-2950	13	191	
59	93	Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 841-5	16.4	188	
59	92	Anisotropy of superconductivity from MgB2 single crystals. <i>Applied Physics Letters</i> , 2001 , 79, 2779-2781	3.4	186	
59	91	Integrating the g-CN Nanosheet with B-H Bonding Decorated Metal-Organic Framework for CO Activation and Photoreduction. <i>ACS Nano</i> , 2018 , 12, 5333-5340	16.7	186	
59	90	High-active anatase TiO[hanosheets exposed with 95% {100} facets toward efficient Hævolution and CO[photoreduction. ACS Applied Materials & Interfaces, 2013, 5, 1348-54	9.5	184	
58	39	Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity. <i>Advanced Materials</i> , 2008 , 20, 3816-3819	24	184	
58	38	Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. <i>Chemical Physics Letters</i> , 2000 , 332, 271-277	2.5	183	
58	³ 7	Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3 N4 Nanosheets under Visible Light. <i>Small</i> , 2016 , 12, 4431-9	11	182	
58	36	Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. <i>Dalton Transactions</i> , 2008 , 1426-30	4.3	182	
58	35	Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. <i>Inorganic Chemistry</i> , 2010 , 49, 2302	2- 5 .1	178	
58	84	Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. <i>Energy and Environmental Science</i> , 2012 , 5, 6304-6312	35.4	171	
58	33	Photocatalytic Degradation of Rhodamine B over Pb3Nb4O13/Fumed SiO2Composite under Visible Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13109-13116	3.8	171	

582	Theoretical study of high photocatalytic performance of Ag3PO4. Physical Review B, 2011, 83,	3.3	170
581	Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14847		163
580	Decomposition of Organic Compounds over NaBiO3 under Visible Light Irradiation. <i>Chemistry of Materials</i> , 2007 , 19, 198-202	9.6	163
579	Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. <i>Journal of Materials Research</i> , 2007 , 22, 1859-1871	2.5	157
578	Quantitative structure analyses of YBa2Cu3O7- delta thin films: Determination of oxygen content from x-ray-diffraction patterns. <i>Physical Review B</i> , 1993 , 48, 7554-7564	3.3	157
577	Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation. <i>Chemical Physics Letters</i> , 2003 , 382, 175-179	2.5	156
576	Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8016-8035	16.4	156
575	Superior Photocatalytic H Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor. <i>Advanced Materials</i> , 2017 , 29, 1703258	24	155
574	Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. <i>Applied Surface Science</i> , 2007 , 253, 8500-8506	6.7	155
573	Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 141-149	21.8	152
572	Engineering the Edges of MoS (WS) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14962-14969	16.4	151
57 ¹	Photoluminescence and photocatalytic properties of SrSnO3 perovskite. <i>Chemical Physics Letters</i> , 2006 , 418, 174-178	2.5	151
57°	Synthesis and Photocatalytic Activities of NaNbO3 Rods Modified by In2O3 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6157-6162	3.8	147
569	Efficient Photocatalysis on BaBiO3 Driven by Visible Light. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12779-12785	3.8	145
568	{Ta12}/{Ta16} cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19716-21	16.4	144
567	Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surface-Alkalinized Titanium Carbide MXene as Cocatalyst. <i>ChemSusChem</i> , 2018 , 11, 1606-1611	8.3	142
566	Correlation of Crystal Structures, Electronic Structures, and Photocatalytic Properties in a Series of Ag-based Oxides: AgAlO2, AgCrO2, and Ag2CrO4. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3134-3141	3.8	141
565	Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. <i>Chemistry of Materials</i> , 2007 , 19, 116-122	9.6	141

(2011-2013)

564	Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO[photoreduction into hydrocarbon fuels. <i>Scientific Reports</i> , 2013 , 3, 1667	4.9	137	
563	Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3Composite Oxide Semiconductors. <i>Chemistry of Materials</i> , 2005 , 17, 3255-3261	9.6	137	
562	Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. <i>Advanced Functional Materials</i> , 2018 , 28, 1803309	15.6	137	
561	Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. <i>Chemical Communications</i> , 2014 , 50, 11517-9	5.8	136	
560	The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. <i>Journal of Molecular Catalysis A</i> , 2008 , 284, 155-160		136	
559	Photocatalytic water splitting under visible light by mixed-valence Sn(3)O(4). <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 3790-3	9.5	135	
558	Targeting Activation of CO2 and H2 over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2 Methanation in Flow-Type System. <i>Advanced Energy Materials</i> , 2017 , 7, 1601657	21.8	134	
557	Polymeric Carbon Nitrides: Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion. <i>Science of Advanced Materials</i> , 2012 , 4, 282-291	2.3	130	
556	Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 112-120	21.8	129	
555	Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11545-9	16.4	129	
554	In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9491-9501	13	128	
553	Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires. <i>ACS Catalysis</i> , 2015 , 5, 5342-5348	13.1	127	
552	Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties. <i>Chemical Communications</i> , 2013 , 49, 636-8	5.8	127	
551	A Systematical Study on Photocatalytic Properties of AgMO2 (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1560-1566	3.8	127	
550	Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15126-15133	13	125	
549	Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+). <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 79-83	4.7	125	
548	Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal D rganic Framework. <i>Angewandte Chemie</i> , 2016 , 128, 14522-14526	3.6	124	
547	High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. Journal of Materials Chemistry, 2011 , 21, 12852		124	

546	Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M = Mg, Ni, Zn). <i>Chemistry of Materials</i> , 2005 , 17, 5177-5182	9.6	121
545	Physicochemical Mechanism for the Continuous Reaction of EAl2O3-Modified Aluminum Powder with Water. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1521-1526	3.8	118
544	Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. <i>ACS Applied Materials & Discrete Active Plasmonic Coupling Effect Active Plasmonic Coupling Effect Pt and Au Nanoparticles. ACS Applied Materials & Discrete Plasmonic Coupling Effect Pt and Au Nanoparticles. ACS Applied Materials & Discrete Plasmonic Coupling Effect Pt and Au Nanoparticles. ACS Applied Materials & Discrete Plasmonic Coupling Effect Pt and Au Nanoparticles. ACS Applied Materials & Discrete Pt and P</i>	9.5	118
543	Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4246		117
542	A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2013 , 134-135, 286-	29 2 ⁸	116
54 ¹	Photocatalytic activities of AgSbO3 under visible light irradiation. <i>Catalysis Today</i> , 2008 , 131, 197-202	5.3	113
540	Synthesis and photocatalytic properties of metastable Bi2O3 stabilized by surface-coordination effects. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5119-5125	13	111
539	Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. <i>Chemical Communications</i> , 2011 , 47, 2041-3	5.8	111
538	Photoreduction of CO 2 over the well-crystallized ordered mesoporous TiO 2 with the confined space effect. <i>Nano Energy</i> , 2014 , 9, 50-60	17.1	110
537	SrSnO3Nanostructures: Synthesis, Characterization, and Photocatalytic Properties. <i>Chemistry of Materials</i> , 2007 , 19, 4585-4591	9.6	109
536	Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20. <i>Chemical Physics Letters</i> , 2005 , 410, 104-107	2.5	109
535	Solar-Energy-Mediated Methane Conversion. <i>Joule</i> , 2019 , 3, 1606-1636	27.8	108
534	Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. <i>Nano Energy</i> , 2017 , 36, 331-340	17.1	106
533	Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8353	-8360	106
532	Effect of different modification agents on hydrogen-generation by the reaction of Al with water. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 9561-9568	6.7	105
531	Synergistic Activity of Co and Fe in Amorphous Cox-Fe-B Catalyst for Efficient Oxygen Evolution Reaction. <i>ACS Applied Materials & Discrete Synthesis</i> , 19, 40333-40343	9.5	104
530	Facile Synthesis of Single-Crystalline Ag2V4O11 Nanotube Material as a Novel Visible-Light-Sensitive Photocatalyst. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 145-151	3.8	104
529	A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M = Ca, Sr, and Ba) with Special Electronic Structures. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 4936-4941	3.4	104

528	Metal nanoparticles induced photocatalysis. <i>National Science Review</i> , 2017 , 4, 761-780	10.8	103
527	Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties. Journal of Materials Chemistry A, 2013 , 1, 2387	13	103
526	Biopolymer-activated graphitic carbon nitride towards a sustainable photocathode material. <i>Scientific Reports</i> , 2013 , 3, 2163	4.9	103
525	Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In O Nanosheets with Bifunctional Oxygen Vacancies. <i>Advanced Materials</i> , 2020 , 32, e1903915	24	103
524	In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dual-Purpose Strategy for Efficient Molecular Oxygen Activation. <i>Advanced Functional Materials</i> , 2017 , 27, 1703923	15.6	101
523	New Series of Solid-Solution Semiconductors (AgNbO3)1½(SrTiO3)x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3785-3792	3.8	101
522	Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. <i>Nanoscale</i> , 2016 , 8, 11870-4	7.7	101
521	Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118088	21.8	100
520	Photoreduction of Carbon Dioxide Over NaNbO3 Nanostructured Photocatalysts. <i>Catalysis Letters</i> , 2011 , 141, 525-530	2.8	100
519	Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO methanation. <i>Nature Communications</i> , 2019 , 10, 2359	17.4	99
518	Direct and Selective Photocatalytic Oxidation of CH to Oxygenates with O on Cocatalysts/ZnO at Room Temperature in Water. <i>Journal of the American Chemical Society</i> , 2019 , 141, 20507-20515	16.4	99
517	Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx(x = 1,2) architectures. <i>CrystEngComm</i> , 2012 , 14, 3163	3.3	98
516	Ag3PO4/In(OH)3 Composite Photocatalysts with Adjustable Surface-Electric Property for Efficient Photodegradation of Organic Dyes under Simulated Solar-Light Irradiation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17716-17724	3.8	98
515	Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation. <i>Applied Catalysis A: General</i> , 2008 , 334, 51-58	5.1	98
514	Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. <i>International Journal of Hydrogen Energy</i> , 2003 , 28, 663-669	6.7	97
513	Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. <i>Nano Energy</i> , 2016 , 26, 398-404	17.1	96
512	Photophysical and photocatalytic properties of Ca(1-x)BixVxMo(1-x)O4 solid solutions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11188-95	3.4	96
511	Band-structure-controlled BiO(ClBr)(1日)/2Ix solid solutions for visible-light photocatalysis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8123-8132	13	95

510	Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. <i>Applied Catalysis B: Environmental</i> , 2018 , 221, 670) -68 0	95
509	Correlation between the band positions of (SrTiO3)1-x.(LaTiO2N)x solid solutions and photocatalytic properties under visible light irradiation. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 6717-23	3.6	95
508	Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light. <i>Chemical Communications</i> , 2012 , 48, 1269-71	5.8	94
507	Mesoporous palladiumdopper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4776-4782	13	93
506	Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient Solar-Driven Water Splitting. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 8982-8987	8.3	93
505	Photothermal Conversion of CO2 into CH4 with H2 over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. <i>Angewandte Chemie</i> , 2014 , 126, 11662-11666	3.6	92
504	Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications. <i>Nanoscale</i> , 2013 , 5, 7552-7	7.7	92
503	Impact of ligand modification on hydrogen photogeneration and light-harvesting applications using cyclometalated iridium complexes. <i>Inorganic Chemistry</i> , 2012 , 51, 4123-33	5.1	92
502	Slow Photons for Photocatalysis and Photovoltaics. <i>Advanced Materials</i> , 2017 , 29, 1605349	24	91
501	A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light. <i>International Journal of Hydrogen Energy</i> , 2003 , 28, 651-655	6.7	91
500	Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. Journal of Materials Chemistry A, 2014 , 2, 9875	13	90
499	Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications. <i>Chemistry - A European Journal</i> , 2012 , 18, 14272-5	4.8	90
498	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. <i>NPG Asia Materials</i> , 2016 , 8, e293	- [293	89
497	NaNbO3 Nanostructures: Facile Synthesis, Characterization, and Their Photocatalytic Properties. <i>Catalysis Letters</i> , 2009 , 132, 205-212	2.8	89
496	Superconductivity of ternary silicide with the AlB(2)-type structure Sr(Ga(0.37),Si(0.63))(2). <i>Physical Review Letters</i> , 2001 , 87, 077003	7.4	89
495	Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. <i>Applied Catalysis B: Environmental</i> , 2019 , 240, 64-	7 <mark>1</mark> 1.8	89
494	Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4221	13	87
493	Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14486-8	3.6	87

(2001-2008)

492	Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 2487-2491	3.9	86
491	Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. <i>ACS Applied Materials & District Materials & </i>	9.5	86
490	Selective-Synthesis of High-Performance Single-Crystalline Sr2Nb2O7 Nanoribbon and SrNb2O6 Nanorod Photocatalysts. <i>Chemistry of Materials</i> , 2009 , 21, 2327-2333	9.6	85
489	Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1☑(NaNbO3)x solid solutions. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 2845-2850	3.3	85
488	Intermolecular cascaded Econjugation channels for electron delivery powering CO photoreduction. <i>Nature Communications</i> , 2020 , 11, 1149	17.4	83
487	Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. <i>Nano Energy</i> , 2017 , 39, 409-417	17.1	83
486	Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. <i>Nano Energy</i> , 2016 , 25, 128-135	17.1	83
485	Light assisted CO 2 reduction with methane over group VIII metals: Universality of metal localized surface plasmon resonance in reactant activation. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 183-18	9 ^{21.8}	81
484	Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO3 and their photocatalytic properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1185-1191	13	81
483	Nature-Inspired Environmental P hosphorylation B oosts Photocatalytic H2 Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. <i>Angewandte Chemie</i> , 2015 , 127, 13765-1376	9 ^{3.6}	81
482	Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. <i>Nano Energy</i> , 2018 , 45, 109-117	17.1	80
481	Constructing cubicBrthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5606-5609	13	80
480	Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. <i>Chemistry - A European Journal</i> , 2010 , 16, 10327-31	4.8	79
479	Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11677-82	3.4	79
478	Porous-structured Cu2O/TiO2 nanojunction[material toward efficient[CO2[photoreduction. <i>Nanotechnology</i> , 2014 , 25, 165402	3.4	78
477	Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. <i>Chemistry - A European Journal</i> , 2012 , 18, 7543-51	4.8	78
476	Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. <i>Scientific Reports</i> , 2013 , 3, 2720	4.9	78
475	Substitution Effects of In3+by Al3+and Ga3+on the Photocatalytic and Structural Properties of the Bi2InNbO7Photocatalyst. <i>Chemistry of Materials</i> , 2001 , 13, 1765-1769	9.6	78

474	A CoDE mbedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for COD hotoreduction. <i>Nanoscale</i> , 2016 , 8, 6712-20	7.7	77
473	Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO2 Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 7556-7565	13.1	77
472	Photophysical and Photocatalytic Properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba). <i>Journal of Physical Chemistry B</i> , 2003 , 107, 61-65	3.4	77
471	Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 2317-2320	3.9	76
470	Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 60-68	21.8	75
469	Plasmonic Janus-Composite Photocatalyst Comprising Au and ClīiO2 for Enhanced Aerobic Oxidation over a Broad Visible-Light Range. <i>Advanced Functional Materials</i> , 2014 , 24, 7754-7762	15.6	75
468	An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. <i>Dalton Transactions</i> , 2013 , 42, 2687-90	4.3	75
467	Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1Nb O4 (0?x?1). <i>Chemical Physics Letters</i> , 2001 , 343, 303-308	2.5	75
466	Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4100-4105	3.8	74
465	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5570-5574	16.4	73
464	Size-Dependent Mie Scattering Effect on TiO2 Spheres for the Superior Photoactivity of H2 Evolution. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 3833-3839	3.8	73
463	General synthesis of hybrid TiO2 mesoporous "french fries" toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: a case of TiO2/ZnO. <i>Chemistry - A European Journal</i> , 2011 , 17, 9057-61	4.8	73
462	Modification of Al Particle Surfaces by FAl2O3 and Its Effect on the Corrosion Behavior of Al. Journal of the American Ceramic Society, 2005 , 88, 977-979	3.8	72
461	A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation. <i>Chemistry - A European Journal</i> , 2009 , 15, 3538-45	4.8	71
460	Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. <i>Applied Catalysis B: Environmental</i> , 2019 , 250, 10-16	21.8	71
459	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. <i>Nano Energy</i> , 2016 , 28, 158-163	17.1	70
458	Large impact of strontium substitution on photocatalytic water splitting activity of BaSnO3. <i>Applied Physics Letters</i> , 2007 , 91, 094107	3.4	70
457	Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation. <i>Materials Research Bulletin</i> , 2001 , 36, 1185-1193	5.1	70

(2007-2015)

456	A highly durable p-LaFeO3/n-Fe2O3 photocell for effective water splitting under visible light. <i>Chemical Communications</i> , 2015 , 51, 3630-3	5.8	69
455	A full compositional range for a (Ga1-x Zn x)(N1-x O x) nanostructure: high efficiency for overall water splitting and optical properties. <i>Small</i> , 2015 , 11, 871-6	11	69
454	Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118686	21.8	69
453	Selective Activation of Benzyl Alcohol Coupled with Photoelectrochemical Water Oxidation via a Radical Relay Strategy. <i>ACS Catalysis</i> , 2020 , 10, 4906-4913	13.1	68
452	Mechanism of photocatalytic activities in Cr-doped SrTiO3 under visible-light irradiation: an insight from hybrid density-functional calculations. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1876-80	3.6	68
451	Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 65-69	4.7	68
450	Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. <i>Chemical Communications</i> , 2015 , 51, 7645-8	5.8	67
449	Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. <i>Electrochemistry Communications</i> , 2011 , 13, 275-278	5.1	67
448	Role of R in Bi2RNbO7 (R = Y, Rare Earth): Effect on Band Structure and Photocatalytic Properties. Journal of Physical Chemistry B, 2002 , 106, 517-520	3.4	67
447	Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M=Sr, Ba). <i>Chemical Physics Letters</i> , 2003 , 378, 24-28	2.5	65
446	Photoelectrochemical properties of nanomultiple CaFe2O4/ZnFe2O4 pn junction photoelectrodes. <i>Langmuir</i> , 2013 , 29, 3116-24	4	64
445	2-Propanol photodegradation over nitrogen-doped NaNbO3 powders under visible-light irradiation. <i>Journal of Physics and Chemistry of Solids</i> , 2009 , 70, 931-935	3.9	64
444	Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9222-9229	13	63
443	Conformal BiVO-Layer/WO-Nanoplate-Array Heterojunction Photoanode Modified with Cobalt Phosphate Cocatalyst for Significantly Enhanced Photoelectrochemical Performances. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5623-5631	9.5	63
442	Synergistic effect of Au and Rh on SrTiO3 in significantly promoting visible-light-driven syngas production from CO2 and H2O. <i>Chemical Communications</i> , 2016 , 52, 5989-92	5.8	63
441	Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au t u Alloy Nanoparticles Supported on SrTiO3/TiO2 Coaxial Nanotube Arrays. <i>Angewandte Chemie</i> , 2015 , 127, 855-859	3.6	61
440	Band gap tuning of Na1\(\mathbb{L}\)axTa1\(\mathbb{C}\)cxO3 solid solutions for visible light photocatalysis. <i>Applied Physics Letters</i> , 2007 , 91, 254108	3.4	61
439	Enhanced photocurrentloltage characteristics of WO3/Fe2O3 nano-electrodes. <i>Journal Physics D:</i> Applied Physics, 2007 , 40, 1091-1096	3	61

438	A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. <i>Chemical Physics Letters</i> , 2003 , 373, 191-196	2.5	61
437	Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. <i>Journal of Molecular Catalysis A</i> , 2001 , 168, 289-297		61
436	Engineering the crystallinity of MoS2 monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017 , 5, 8591-8598	13	60
435	Synergetic Exfoliation and Lateral Size Engineering of MoS for Enhanced Photocatalytic Hydrogen Generation. <i>Small</i> , 2018 , 14, e1704153	11	60
434	Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15553-15559	13	60
433	Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 9472-5	4.8	59
432	Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance. <i>Angewandte Chemie</i> , 2013 , 125, 6821-6825	3.6	59
431	Adsorption and photodegradation properties of anionic dyes by layered double hydroxides. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 1037-1045	3.9	58
430	Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. <i>Angewandte Chemie</i> , 2004 , 116, 4563-4566	3.6	58
429	Efficient photocatalytic CO2 reduction in all-inorganic aqueous environment: Cooperation between reaction medium and Cd(II) modified colloidal ZnS. <i>Nano Energy</i> , 2017 , 34, 524-532	17.1	57
428	Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 252-257	21.8	57
427	Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4: Effects on Photocatalytic Activity. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 13098-13101	3.4	57
426	Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 265, 118581	21.8	56
425	Growth and anisotropic resistivity of PrBa2Cu4O8 and Pr2Ba4Cu7O15 single crystals: A direct probe of metallic Cu-O double chains. <i>Physical Review B</i> , 2000 , 61, 6327-6333	3.3	55
424	W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6125	13	54
423	Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3. <i>Dalton Transactions</i> , 2009 , 8519-24	4.3	54
422	Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+,Ga3+ and In3+). <i>Chemical Physics Letters</i> , 2001 , 333, 57-62	2.5	54
421	Cation Vacancy-Initiated CO2 Photoreduction over ZnS for Efficient Formate Production. <i>ACS Energy Letters</i> , 2019 , 4, 1387-1393	20.1	53

(2012-2004)

420	Photocatalytic degradation of MB on MIn2O4 (M=alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. <i>Catalysis Today</i> , 2004 , 93-95, 885-889	5.3	53
419	Enhancing photocatalytic activity for visible-light-driven H 2 generation with the surface reconstructed LaTiO 2 N nanostructures. <i>Nano Energy</i> , 2015 , 12, 775-784	17.1	52
418	Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: towards CO2 photo-fixation into CO and CH4. <i>Nanoscale</i> , 2015 , 7, 113-20	7.7	52
417	Determination of Crystal Structure of Graphitic Carbon Nitride: Ab Initio Evolutionary Search and Experimental Validation. <i>Chemistry of Materials</i> , 2017 , 29, 2694-2707	9.6	51
416	An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light. <i>Nano Energy</i> , 2019 , 62, 250-258	17.1	51
415	Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction. <i>Chemical Communications</i> , 2010 , 46, 1532-4	5.8	51
414	Forced Impregnation Approach to Fabrication of Large-Area, Three-Dimensionally Ordered Macroporous Metal Oxides. <i>Chemistry of Materials</i> , 2010 , 22, 3583-3585	9.6	51
413	Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 4716	-4 7 23	51
412	Mesoporous In(OH)3 for photoreduction of CO2 into renewable hydrocarbon fuels. <i>Applied Surface Science</i> , 2013 , 280, 418-423	6.7	50
411	Enhancement of photoelectric conversion properties of SrTiO3/\(\overline{\operation}\) Enhancement of photoelectric conversion properties of SrTiO3/\(\overline{\operation}\) Enhancement of photoelectric conversion properties of SrTiO3/\(\overline{\operation}\) Ee2O3heterojunction photoelectric conversion photo	3	50
410	Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. <i>Energy Storage Materials</i> , 2018 , 13, 49-56	19.4	49
409	Electronic coupling assembly of semiconductor nanocrystals: self-narrowed band gap to promise solar energy utilization. <i>Energy and Environmental Science</i> , 2011 , 4, 1684	35.4	49
408	Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10567-10573	13	48
407	Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. <i>Nano Energy</i> , 2014 , 8, 103-109	17.1	48
406	Photocatalytic properties of a new photocatalyst K2Sr1.5Ta3O10. <i>Chemical Physics Letters</i> , 2007 , 435, 96-99	2.5	48
405	Solar-Driven Water-Gas Shift Reaction over CuO /Al O with 1.1 % of Light-to-Energy Storage. Angewandte Chemie - International Edition, 2019 , 58, 7708-7712	16.4	47
404	Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: topotactic synthesis and enhanced photocatalytic activity. <i>Chemistry - A European Journal</i> , 2012 , 18, 3157-62	4.8	47
403	Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. <i>Angewandte Chemie</i> , 2012 , 124, 2445-2449	3.6	47

402	Band structure design and photocatalytic activity of In2O3/NIhNbO4 composite. <i>Applied Physics Letters</i> , 2009 , 95, 032107	3.4	47
401	Surface modification and photocatalytic activity of distorted pyrochlore-type Bi2M(M=In, Ga and Fe)TaO7 photocatalysts. <i>Journal of Physics and Chemistry of Solids</i> , 2005 , 66, 349-355	3.9	47
400	Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7538-7542	7.1	46
399	Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water. <i>Applied Catalysis B: Environmental</i> , 2020 , 274, 119096	21.8	46
398	High performance Au-Cu alloy for enhanced visible-light water splitting driven by coinage metals. <i>Chemical Communications</i> , 2016 , 52, 4694-7	5.8	46
397	Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 253, 323-330	21.8	45
396	Photocatalytic reactivity of {121} and {211} facets of brookite TiO2 crystals. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2331-2337	13	45
395	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2018 , 232, 446-453	21.8	45
394	Hierarchical nanowire arrays based on carbon nanotubes and Co3O4 decorated ZnO for enhanced photoelectrochemical water oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13731-13737	13	45
393	Bifunctional-nanotemplate assisted synthesis of nanoporous SrTiOphotocatalysts toward efficient degradation of organic pollutant. <i>ACS Applied Materials & Distriction of State of Stat</i>	9.5	45
392	Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO(2). <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5924-34	3.6	45
391	Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment. <i>CrystEngComm</i> , 2012 , 14, 3063	3.3	45
390	Degradation in photocatalytic activity induced by hydrogen-related defects in nano-LiNbO3 material. <i>Applied Physics Letters</i> , 2006 , 88, 071917	3.4	45
389	Unusually large Tc enhancement in superconducting PrBa2Cu3Ox under pressure. <i>Physical Review B</i> , 1998 , 58, R619-R622	3.3	45
388	Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO2 Photothermal Reduction: A Case of Atomic-Scale Dispersed CoN Species Anchored [email[protected] Hybrid. <i>ACS Catalysis</i> , 2020 , 10, 4726-4736	13.1	44
387	An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation. <i>Nanoscale</i> , 2014 , 6, 7303-11	7.7	44
386	Enhanced photocatalytic activity of Ag/Ag3PO4 coaxial hetero-nanowires. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10612	13	42
385	BiAg alloy nanospheres: a new photocatalyst for H2 evolution from water splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 19488-93	9.5	42

384	A p-type Cr-doped TiO2 photo-electrode for photo-reduction. <i>Chemical Communications</i> , 2013 , 49, 3440	-3 .8	42
383	Systematic study of the growth-temperature dependence of structural disorder and superconductivity in YBa2Cu3O7- delta thin films. <i>Physical Review B</i> , 1994 , 50, 7099-7106	3.3	42
382	Enhanced Photocatalytic Oxidation of Isopropanol by [email[protected]2 CoreBhell Structure with Ultrathin Anatase Porous Shell: Toxic Intermediate Control. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2016 , 55, 8096-8103	3.9	42
381	A rapidly room-temperature-synthesized Cd/ZnS:Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 68-73	21.8	42
380	Growth of shape- and size-selective zinc oxide nanorods by a microwave-assisted chemical bath deposition method: effect on photocatalysis properties. <i>Chemistry - A European Journal</i> , 2010 , 16, 10569	1 ⁴ 7 ⁸ 5	41
379	Optical and structural properties of the BiTa1NbxO4 (0?x?1) compounds. <i>Solid State Communications</i> , 2001 , 119, 471-475	1.6	41
378	Improved Photocatalytic H Evolution over G-Carbon Nitride with Enhanced In-Plane Ordering. <i>Small</i> , 2016 , 12, 6160-6166	11	41
377	Beyond CN Econjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. <i>Chemical Society Reviews</i> , 2021 , 50, 2147-2172	58.5	41
376	Three-Dimensional Lupinus-like TiO Nanorod@SnO Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. <i>ACS Applied Materials & ACS Applied Materials</i>	9.5	40
375	Efficient organic degradation under visible light by Bi2O3 with a CuO -assistant electron transfer process. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 267-276	21.8	40
374	Visible light photoactivity from a bonding assembly of titanium oxide nanocrystals. <i>Chemical Communications</i> , 2011 , 47, 4219-21	5.8	39
373	Hydrogen Production and Characterization of MLaSrNb2NiO9 (M = Na, Cs, H) Based Photocatalysts Chemistry of Materials, 2010 , 22, 1107-1113	9.6	39
372	2-Propanol photodegradation over lead niobates under visible light irradiation. <i>Applied Catalysis A: General</i> , 2007 , 326, 1-7	5.1	39
371	Visible light sensitive photocatalysts In1⊠MxTaO4 (M=3d transition-metal) and their activity controlling factors. <i>Journal of Physics and Chemistry of Solids</i> , 2005 , 66, 266-273	3.9	39
370	Electric field-directed growth and photoelectrochemical properties of cross-linked Au-ZnO hetero-nanowire arrays. <i>Chemical Communications</i> , 2015 , 51, 2103-6	5.8	38
369	Hydrothermal Synthesis and Structures of Na3In2(PO4)3and Na3In2(AsO4)3: Synthetic Modifications of the Mineral Alluaudite. <i>Journal of Solid State Chemistry</i> , 1997 , 131, 131-137	3.3	38
368	Photophysical and Photocatalytic Activities of a Novel Photocatalyst BaZn1/3Nb2/3O3. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12790-12794	3.4	38
367	Co and Fe Codoped WO as Alkaline-Solution-Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solar-To-Hydrogen Efficiency of 16.9. <i>Advanced Science</i> , 2019 , 6, 1900465	13.6	37

366	Inhomogeneous RVO4 Photocatalyst Systems (R = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8331-8341	3.8	37
365	Possible Role of Lattice Dynamics in the Photocatalytic Activity of BaM1/3N2/3O3 (M = Ni, Zn; N = Nb, Ta). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8888-8893	3.4	37
364	Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. <i>Coordination Chemistry Reviews</i> , 2020 , 424, 213516	23.2	37
363	Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO Photoreduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 19259-19	2 67 4	37
362	Titanium-Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020 , 4, 200	00486	37
361	A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16781-16784	16.4	37
360	Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. <i>ACS Applied Materials & Diffusion of ACS Applied Materials & Diffusion of ACS Applied Materials & Diffusion of Communication (Note of Communication)</i>	9.5	36
359	Selective local nitrogen doping in a TiO2 electrode for enhancing photoelectrochemical water splitting. <i>Chemical Communications</i> , 2012 , 48, 8649-51	5.8	36
358	Hydrothermal synthesis of Na(0.5)La(0.5)TiO3-LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution. <i>Chemistry - A European Journal</i> , 2011 , 17, 7858-67	4.8	36
357	In situ construction of	3.7	35
356	Strong adsorption and effective photocatalytic activities of one-dimensional nano-structured silver titanates. <i>Applied Catalysis A: General</i> , 2010 , 375, 85-91	5.1	35
355	BaCeO3 as a novel photocatalyst with 4f electronic configuration for water splitting. <i>Solid State Ionics</i> , 2008 , 178, 1711-1713	3.3	35
354	Optimizing Electron Densities of Ni-N-C Complexes by Hybrid Coordination for Efficient Electrocatalytic CO Reduction. <i>ChemSusChem</i> , 2020 , 13, 929-937	8.3	35
353	Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	34
352	Bonding and Electron Energy-Level Alignment at Metal/TiO2 Interfaces: A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 5549-5556	3.8	34
351	Temperature Effect on Hydrogen Generation by the Reaction of FAl2O3-Modified Al Powder with Distilled Water. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2975-2977	3.8	34
350	Photocatalytic decomposition of water with Bi2InNbO7. <i>Catalysis Letters</i> , 2000 , 68, 235-239	2.8	34
349	Selective Photo-oxidation of Methane to Methanol with Oxygen over Dual-Cocatalyst-Modified Titanium Dioxide. <i>ACS Catalysis</i> , 2020 , 10, 14318-14326	13.1	34

(2015-2020)

348	Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119387	21.8	34	
347	Fabricating a Au@TiO2Plasmonic System To Elucidate Alkali-Induced Enhancement of Photocatalytic H2Evolution: Surface Potential Shift or Methanol Oxidation Acceleration?. <i>ACS Catalysis</i> , 2018 , 8, 4266-4277	13.1	33	
346	Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis. <i>Scientific Reports</i> , 2016 , 6, 20001	4.9	33	
345	Simple Room-Temperature Mineralization Method to SrWO4 Micro/Nanostructures and Their Photocatalytic Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15778-15784	3.8	33	
344	Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation. <i>Dalton Transactions</i> , 2009 , 2423-7	4.3	33	
343	Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. <i>Chemical Science</i> , 2021 , 12, 5701-5719	9.4	33	
342	Recent Progress on Exploring Stable Metal Drganic Frameworks for Photocatalytic Solar Fuel Production. <i>Solar Rrl</i> , 2020 , 4, 1900547	7.1	32	
341	Facile synthesis of hollow Ag@AgBr heterostructures with highly efficient visible-light photocatalytic properties. <i>CrystEngComm</i> , 2014 , 16, 8317	3.3	32	
340	Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 280-283	3.9	32	
339	Enhanced photoelectrolysis of water with photoanode Nb:SrTiO3. <i>Applied Physics Letters</i> , 2004 , 85, 689	9-6941	32	
338	Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 1013-1020	21.8	32	
337	Enhanced water oxidation reaction kinetics on a BiVO4 photoanode by surface modification with Ni4O4 cubane. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 278-288	13	31	
336	Remarkable Visible-Light Photocatalytic Activity Enhancement over Au/p-type TiO Promoted by Efficient Interfacial Charge Transfer. <i>ACS Applied Materials & Distriction of the Promoted Section of the Promoted Section 1</i> , 24154-24163	9.5	31	
335	Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1901024	15.6	31	
334	Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution. <i>Chemical Engineering Journal</i> , 2020 , 388, 124346	14.7	31	
333	Photocatalytic Properties of TiO[sub 2] Nanostructures Fabricated by Means of Glancing Angle Deposition and Anodization. <i>Journal of the Electrochemical Society</i> , 2009 , 156, K160	3.9	31	
332	The crystalline/amorphous contact in Cu2O/Ta2O5 heterostructures: increasing its sunlight-driven overall water splitting efficiency. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2732-2738	13	30	
331	Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries. <i>ACS Applied Materials & Discrete Separator for Li-Ion Batteries</i> .	9.5	30	

330	Ultrathin graphene encapsulated Cu nanoparticles: A highly stable and efficient catalyst for photocatalytic H2 evolution and degradation of isopropanol. <i>Chemical Engineering Journal</i> , 2020 , 390, 124558	14.7	30
329	Constructing and controlling of highly dispersed metallic sites for catalysis. <i>Nano Today</i> , 2018 , 19, 108-	1 25 .9	30
328	Selective Deposition of Ag3PO4 on Specific Facet of BiVO4 Nanoplate for Enhanced Photoelectrochemical Performance. <i>Solar Rrl</i> , 2018 , 2, 1800102	7.1	30
327	A new type of hybrid nanostructure: complete photo-generated carrier separation and ultrahigh photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14245-14250	13	30
326	Undoped visible-light-sensitive titania photocatalyst. <i>Journal of Materials Science</i> , 2013 , 48, 108-114	4.3	30
325	Synthesis of hierarchical Ag2ZnGeO4 hollow spheres for enhanced photocatalytic property. <i>Chemical Communications</i> , 2012 , 48, 9894-6	5.8	30
324	Nanoarchitectonics of a Au nanoprism array on WO film for synergistic optoelectronic response. <i>Science and Technology of Advanced Materials</i> , 2011 , 12, 044604	7.1	30
323	Growth of Single Crystals in the Systems withRRhB andRRhBI (R=Rare Earth Element) from Molten Copper Flux. <i>Journal of Solid State Chemistry</i> , 1997 , 133, 82-87	3.3	30
322	Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 127-142	4.5	30
321	Fabrication of Ag3PO4PAN composite nanofibers for photocatalytic applications. <i>CrystEngComm</i> , 2013 , 15, 4802	3.3	29
320	WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation. <i>Chemical Communications</i> , 2010 , 46, 5352-4	5.8	29
319	Photooxidation of Polycyclic Aromatic Hydrocarbons over NaBiO3 under Visible Light Irradiation. <i>Catalysis Letters</i> , 2008 , 122, 131-137	2.8	29
318	Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M=Al, Ga, In). <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 79, 83-85	3.1	29
317	A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. <i>Chemical Science</i> , 2019 , 11, 791-796	9.4	29
316	Fabrication of Fe2TiO5/TiO2 nanoheterostructures with enhanced visible-light photocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 45343-45348	3.7	29
315	Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: plasmon-mediated hot electron transport via defect states. <i>Chemical Communications</i> , 2014 , 50, 15553-	-6 ^{5.8}	28
314	Synthesis of graphene/tourmaline/TiO 2 composites with enhanced activity for photocatalytic degradation of 2-propanol. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1307-1314	11.3	28
313	Photoanodic properties of pulsed-laser-deposited Fe2O3electrode. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 325101	3	28

(2008-2009)

312	Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation. <i>Applied Catalysis A: General</i> , 2009 , 366, 309-314	5.1	28
311	Preparation and photophysical properties of some oxides in CaBiD system. <i>Journal of Alloys and Compounds</i> , 2008 , 455, 346-352	5.7	28
310	The electronic structures of the thin films of InVO4 and TiO2 by first principles calculations. <i>Thin Solid Films</i> , 2003 , 445, 168-174	2.2	28
309	Photocatalytic H2 evolution over a new visible-light-driven photocatalyst In12NiCr2Ti10O42. <i>Chemical Physics Letters</i> , 2005 , 411, 285-290	2.5	28
308	Selective Preparation of 1T- and 2H-Phase MoS2 Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. <i>ACS Applied Energy Materials</i> , 2020 , 3, 998-1009	6.1	28
307	Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. <i>Nano Energy</i> , 2020 , 77, 105010	17.1	28
306	Ultrathin CobaltManganese Nanosheets: An Efficient Platform for Enhanced Photoelectrochemical Water Oxidation with Electron-Donating Effect. <i>Advanced Functional Materials</i> , 2019 , 29, 1904622	15.6	27
305	One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution. <i>Journal of Colloid and Interface Science</i> , 2009 , 331, 132-7	9.3	27
304	Preparation, structural and photophysical properties of Bi2InNbO7 compound. <i>Journal of Materials Science Letters</i> , 2000 , 19, 1909-1911		27
303	Synthesis and characterization of the nonstoichiometric perovskite-type compound ScRh3Bx. <i>Journal of Alloys and Compounds</i> , 2000 , 309, 107-112	5.7	27
302	Nitrogen-doped ultrathin graphene encapsulated Cu nanoparticles decorated on SrTiO3 as an efficient water oxidation photocatalyst with activity comparable to BiVO4 under visible-light irradiation. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119352	21.8	27
301	Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. <i>Catalysis Communications</i> , 2019 , 123, 69-72	3.2	27
300	Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 1189	65 ^{1.8}	26
299	A new type of p-type NiO/n-type ZnO nano-heterojunctions with enhanced photocatalytic activity. <i>RSC Advances</i> , 2014 , 4, 34649	3.7	26
298	Preparation, characterization and photocatalytic activity of polycrystalline Bi2O3/SrTiO3 composite powders. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 2501-2505	3.9	26
297	Photocatalytic properties of a novel layered photocatalyst CsLaSrNb2NiO9. <i>Catalysis Letters</i> , 2006 , 110, 139-142	2.8	26
296	Substitution effect of Ta5+ by Nb5+ on photocatalytic, photophysical, and structural properties of BiTa1 \square NbxO4(0?x?1.0). <i>Journal of Materials Research</i> , 2002 , 17, 1446-1454	2.5	26
295	Enhancement of Visible-Light Photocatalytic Activity of Ag0.7Na0.3NbO3 Modified by a Platinum Complex. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 20329-20333	3.8	25

294	Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. <i>Applied Surface Science</i> , 2008 , 254, 5191-5198	6.7	25
293	Photocatalytic Behavior of a New Series of In0.8M0.2TaO4 (M = Ni, Cu, Fe) Photocatalysts in Aqueous Solutions. <i>Catalysis Letters</i> , 2001 , 75, 209-213	2.8	25
292	Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. <i>ACS Energy Letters</i> , 2022 , 7, 1043-1065	20.1	25
291	Stabilizing CuGaS by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO reduction under visible light. <i>Nanoscale</i> , 2020 , 12, 8693-8700	7.7	24
290	Superfine Ag nanoparticle decorated Zn nanoplates for the active and selective electrocatalytic reduction of CO to CO. <i>Chemical Communications</i> , 2016 , 52, 14105-14108	5.8	24
289	Design of a photoelectrochemical device for the selective conversion of aqueous CO2 to CO: using mesoporous palladium-copper bimetallic cathode and hierarchical ZnO-based nanowire array photoanode. <i>Chemical Communications</i> , 2016 , 52, 8235-8	5.8	24
288	Photocatalytic hydrogen evolution over SiO2-pillared and nitrogen-doped titanic acid under visible light irradiation. <i>Applied Catalysis A: General</i> , 2010 , 390, 195-200	5.1	24
287	Crystal growth of superconductive PrBa2Cu3O7 J. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 300, 200-206	1.3	24
286	Solid solution range of boron, microhardness and oxidation resistance of the perovskite type RERh3Bx (RE=Gd, Y, Sc) compounds. <i>Journal of Alloys and Compounds</i> , 1999 , 291, 52-56	5.7	24
285	Copper nanoparticles selectively encapsulated in an ultrathin carbon cage loaded on SrTiO as stable photocatalysts for visible-light H evolution via water splitting. <i>Chemical Communications</i> , 2019 , 55, 12900-12903	5.8	24
284	Efficient and selective photocatalytic CH conversion to CHOH with O by controlling overoxidation on TiO. <i>Nature Communications</i> , 2021 , 12, 4652	17.4	24
283	Series of ZnSn(OH) Polyhedra: Enhanced CO Dissociation Activation and Crystal Facet-Based Homojunction Boosting Solar Fuel Synthesis. <i>Inorganic Chemistry</i> , 2017 , 56, 5704-5709	5.1	23
282	PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10187		23
281	Photocatalytic Degradation of Isopropanol Over PbSnO(3) Nanostructures Under Visible Light Irradiation. <i>Nanoscale Research Letters</i> , 2009 , 4, 274-280	5	23
280	Photophysical and Photocatalytic Properties of Three Isostructural Oxide Semiconductors In6NiTi6O22, In3CrTi2O10, and In12NiCr2Ti10O42with Different 3d Transition Metals. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12848-12854	3.8	23
279	A new efficient visible-light-driven photocatalyst Na0.5Bi1.5VMoO8 for oxygen evolution. <i>Chemical Physics Letters</i> , 2008 , 450, 370-374	2.5	23
278	Synthesis and photophysical properties of barium indium oxides. <i>Journal of Materials Research</i> , 2002 , 17, 2201-2204	2.5	23
277	Comprehensive analysis of Helicobacter pylori infection-associated diseases based on miRNA-mRNA interaction network. <i>Briefings in Bioinformatics</i> , 2019 , 20, 1492-1501	13.4	23

276	Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118026	21.8	22	
275	Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb 1☑ Ta x) 2 O 6 solid solutions. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 243-249	21.8	22	
274	Combination of photocatalytic and antibacterial effects of silver oxide loaded on titania nanotubes. <i>Materials Letters</i> , 2011 , 65, 236-239	3.3	22	
273	Role of Particle Sizes in Hydrogen Generation by the Reaction of Al with Water. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 2998-3001	3.8	22	
272	A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation. <i>Chemical Physics Letters</i> , 2004 , 384, 139-143	2.5	22	
271	A novel series of photocatalysts M2.5VMoO8 (M = Mg, Zn) for O2 evolution under visible light irradiation. <i>Catalysis Today</i> , 2004 , 93-95, 891-894	5.3	22	
270	A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. <i>Nature Catalysis</i> ,	36.5	22	
269	Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. <i>Applied Catalysis B: Environmental</i> , 2022 , 301, 120814	21.8	22	
268	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal-Support Interaction Boosts Photocatalysis. <i>Small</i> , 2020 , 16, e2002356	11	22	
267	Triggering Water and Methanol Activation for Solar-Driven H Production: Interplay of Dual Active Sites over Plasmonic ZnCu Alloy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12145-12153	16.4	22	
266	Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic HO production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. <i>Chemical Communications</i> , 2019 , 55, 13279-13282	5.8	22	
265	Breaking Platinum Nanoparticles to Single-Atomic Pt-C Co-catalysts for Enhanced Solar-to-Hydrogen Conversion. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2541-2547	16.4	22	
264	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13629-13634	13	21	
263	Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode. <i>Chemical Communications</i> , 2015 , 51, 14057-9	5.8	21	
262	Novel visible-light sensitive vanadate photocatalysts for water oxidation: implications from density functional theory calculations. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10720-10723	13	21	
261	Ultrathin FeP Nanosheets as an Efficient Catalyst for Electrocatalytic Water Oxidation: Promoted Intermediates Adsorption by Surface Defects. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3577-3585	6.1	21	
260	Polymeric micelle assembly for the direct synthesis of functionalized mesoporous silica with fully accessible Pt nanoparticles toward an improved CO oxidation reaction. <i>Chemical Communications</i> , 2014 , 50, 9101-4	5.8	21	
259	Nanorod-like Bi2O3: a highly active photocatalyst synthesized using g-C3N4 as a template. <i>RSC Advances</i> , 2014 , 4, 55062-55066	3.7	21	

258	From Phase Particle to Phase Hexagonal-Platelet Superstructure over AgGaO2: Phase Transformation, Formation Mechanism of Morphology, and Photocatalytic Properties. <i>Crystal Growth and Design</i> , 2010 , 10, 2921-2927	3.5	21
257	Synthesis of bismuth molybdate photocatalysts for CO2 photo-reduction. <i>Journal of CO2 Utilization</i> , 2019 , 29, 196-204	7.6	21
256	Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO into solar fuels. <i>Chemical Communications</i> , 2018 , 54, 5126-5129	5.8	20
255	Enhanced Visible-Light-Driven Hydrogen Production of Carbon Nitride by Band Structure Tuning. Journal of Physical Chemistry C, 2018 , 122, 17261-17267	3.8	20
254	Preparation and Some Electrical Properties of Yttrium-Doped Antimonic Acids. <i>Chemistry of Materials</i> , 2003 , 15, 928-934	9.6	20
253	Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation. <i>Research on Chemical Intermediates</i> , 2005 , 31, 359-364	2.8	20
252	Recent advances in tuning the electronic structures of atomically dispersed MNC materials for efficient gas-involving electrocatalysis. <i>Materials Horizons</i> , 2020 , 7, 970-986	14.4	20
251	A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. <i>Nano Energy</i> , 2021 , 81, 105651	17.1	20
250	Designing Carbonized Loofah Sponge Architectures with Plasmonic Cu Nanoparticles Encapsulated in Graphitic Layers for Highly Efficient Solar Vapor Generation. <i>Nano Letters</i> , 2021 , 21, 1709-1715	11.5	20
249	Fabrication of Fe3O4@graphene/TiO2 nanohybrid with enhanced photocatalytic activity for isopropanol degradation. <i>Journal of Alloys and Compounds</i> , 2019 , 792, 918-927	5.7	19
248	Polymeric carbon nitride with frustrated Lewis pair sites for enhanced photofixation of nitrogen. Journal of Materials Chemistry A, 2020 , 8, 13292-13298	13	19
247	Integrated analysis of microfibrillar-associated proteins reveals MFAP4 as a novel biomarker in human cancers. <i>Epigenomics</i> , 2019 , 11, 1635-1651	4.4	19
246	Role of photoexcited electrons in hydrogen evolution from platinum co-catalysts loaded on anatase TiO2: a first-principles study. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6664	13	19
245	Synchronizing concurrent model updates based on bidirectional transformation. <i>Software and Systems Modeling</i> , 2013 , 12, 89-104	1.9	19
244	Synthesis of monodisperse Zn-smectite. <i>Applied Clay Science</i> , 2010 , 48, 55-59	5.2	19
243	Water adsorption onto Y and V sites at the surface of the YVO4 photocatalyst and related electronic properties. <i>Journal of Chemical Physics</i> , 2009 , 131, 034701	3.9	19
242	Water molecule adsorption properties on surfaces of MVO4 (M = In, Y, Bi) photo-catalysts. <i>Journal of Electroceramics</i> , 2009 , 22, 114-119	1.5	19
241	Synergistic effect of different phase on the photocatalytic activity of visible light sensitive silver antimonates. <i>Journal of Molecular Catalysis A</i> , 2010 , 320, 79-84		19

(2019-2005)

240	Kinetics of MB degradation and effect of pH on the photocatalytic activity of MIn2O4 (M = Ca, Sr, Ba) under visible light irradiation. <i>Research on Chemical Intermediates</i> , 2005 , 31, 513-519	2.8	19
239	Three-dimensional Bi2MoO6/TiO2 array heterojunction photoanode modified with cobalt phosphate cocatalyst for high-efficient photoelectrochemical water oxidation. <i>Catalysis Today</i> , 2019 , 335, 262-268	5.3	19
238	Alkali Treatment for Enhanced Photoelectrochemical Water Oxidation on Hematite Photoanode. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5420-5429	8.3	18
237	Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method. <i>APL Materials</i> , 2015 , 3, 104414	5.7	18
236	Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation. <i>Angewandte Chemie</i> , 2015 , 127, 11707-1171	1 ^{3.6}	18
235	Photoinduced amphiphilic property of InNbO4 thin film. <i>Langmuir</i> , 2007 , 23, 1924-7	4	18
234	Oxygen potential control in YBa2Cu3O7II thin films. <i>Physica C: Superconductivity and Its Applications</i> , 1993 , 213, 1-13	1.3	18
233	Fabrication of Black In2O3 with Dense Oxygen Vacancy through Dual Functional Carbon Doping for Enhancing Photothermal CO2 Hydrogenation. <i>Advanced Functional Materials</i> , 2021 , 31, 2100908	15.6	18
232	Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution. <i>Catalysis Today</i> , 2019 , 335, 166-172	5.3	18
231	State-of-the-Art Progress in Diverse Black Phosphorus-Based Structures: Basic Properties, Synthesis, Stability, Photo- and Electrocatalysis-Driven Energy Conversion. <i>Advanced Functional Materials</i> , 2021 , 31, 2005197	15.6	18
230	Surface Modification of Two-Dimensional Photocatalysts for Solar Energy Conversion <i>Advanced Materials</i> , 2022 , e2200180	24	18
229	Single Cobalt Atom Anchored Black Phosphorous Nanosheets as an Effective Cocatalyst Promotes Photocatalysis. <i>ChemCatChem</i> , 2020 , 12, 3870-3879	5.2	17
228	Comparative study of photoinduced wettability conversion between [PW12O40]3//brookite and [SiW12O40]4//brookite hybrid films. <i>Materials Chemistry and Physics</i> , 2014 , 144, 327-334	4.4	17
227	Fabrication of ZnxCd1\(\text{NS} Se Nanocrystal-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16885-16892	3.8	17
226	Photochromism and visible light induced H2 generation in Sr2TiO4:Cr complexes. <i>Applied Physics Letters</i> , 2010 , 96, 114103	3.4	17
225	Preparation of Ag-I Intercalated Bi2Sr2CaCu2OySuperconductor. <i>Japanese Journal of Applied Physics</i> , 1993 , 32, L894-L897	1.4	17
224	Toward solar-driven carbon recycling. <i>Joule</i> , 2022 ,	27.8	17
223	Light irradiation enhanced CO2 reduction with methane: A case study in size-dependent optical property of Ni nanoparticles. <i>Catalysis Today</i> , 2019 , 335, 187-192	5.3	17

222	Two-dimensional titanium oxide nanosheets rich in titanium vacancies as an efficient cocatalyst for photocatalytic water oxidation. <i>Journal of Catalysis</i> , 2018 , 367, 296-305	7.3	17
221	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. <i>Angewandte Chemie</i> , 2017 , 129, 5662-5666	3.6	16
220	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2195-2203	13	16
219	Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. <i>Chemical Engineering Journal</i> , 2020 , 399, 125794	14.7	16
218	Room-temperature driven and visible light enhanced dehydrogenation reactions catalysed by basic Au/SrTiO3. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1941-1946	13	16
217	Self-templated construction of 1D NiMo nanowires via a Li electrochemical tuning method for the hydrogen evolution reaction. <i>Nanoscale</i> , 2019 , 11, 19429-19436	7.7	16
216	Boron nonstoichiometry, hardness and oxidation resistance of perovskite-type CeRh3Bx (x=01). Journal of Alloys and Compounds, 2006 , 426, 304-307	5.7	16
215	Photocatalytic Decomposition of Acetaldehyde over Rubidium Bismuth Niobates under Visible Light Irradiation. <i>Materials Transactions</i> , 2005 , 46, 2694-2698	1.3	16
214	Direct metal laser sintering synthesis of carbon nanotube reinforced Ti matrix composites: Densification, distribution characteristics and properties. <i>Journal of Materials Research</i> , 2016 , 31, 281-2	9 ² 1·5	16
213	Photochemical Conversion and Storage of Solar Energy. ACS Energy Letters, 2019, 4, 405-410	20.1	16
212	Synergistic effect between TiO2 and ubiquitous metal oxides on photocatalytic activity of composite nanostructures. <i>Journal of the Ceramic Society of Japan</i> , 2014 , 122, 393-397	1	15
211	Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles. <i>Journal of Materials Research</i> , 2010 , 25, 141-148	2.5	15
210	Synthesis of zinc oxide fibers from precursor bis(acetylacetonato)zinc. <i>Journal of Alloys and Compounds</i> , 2007 , 439, 227-231	5.7	15
209	Photocatalytic properties of CaBiVMO8 (where M=W and Mo) compounds. <i>Catalysis Today</i> , 2006 , 116, 18-21	5.3	15
208	Optical and structural properties of solid oxide photocatalyst Bi2FeNbO7. <i>Journal of Materials Research</i> , 2001 , 16, 35-37	2.5	15
207	Effect of Ni substitution on the structure and photocatalytic activity of InTaO4 under visible light irradiation. <i>Journal of Materials Research</i> , 2002 , 17, 1419-1424	2.5	15
206	Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119924	21.8	15
205	Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. <i>Applied Catalysis B: Environmental</i> , 2021 , 288, 119976	21.8	15

(2004-2015)

204	Mesoporous TiO2/Zn2Ti3O8 hybrid films synthesized by polymeric micelle assembly. <i>Chemical Communications</i> , 2015 , 51, 14582-5	5.8	14	
203	Ultrahigh efficient water oxidation under visible light: Using Fe dopants to integrate nanostructure and cocatalyst in LaTiO2N system. <i>Nano Energy</i> , 2016 , 19, 437-445	17.1	14	
202	Direct synthesis of a mesoporous TiO2-RuO2 composite through evaporation-induced polymeric micelle assembly. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10425-8	3.6	14	
201	Enhancement of photocatalytic activity for WO3 by simple NaOH loading. <i>Applied Catalysis A: General</i> , 2014 , 488, 183-188	5.1	14	
200	Building Niobate Nanoparticles with Hexaniobate Lindqvist Ions. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1473-1480	2.3	14	
199	Synthesis of hierarchical macro-/mesoporous solid-solution photocatalysts by a polymerization-carbonization-oxidation route: the case of Ce(0.49)Zr(0.37)Bi(0.14)O(1.93). <i>Chemistry - A European Journal</i> , 2010 , 16, 8719-25	4.8	14	
198	Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation. <i>Journal of Materials Research</i> , 2007 , 22, 2590-2597	, 2.5	14	
197	Evidence from high-pressure experiments that PrBa2Cu3Ox is a normal YBa2Cu3Ox-like oxide superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 328, 111-117	1.3	14	
196	A disparate role of RP11-424C20.2/UHRF1 axis through control of tumor immune escape in liver hepatocellular carcinoma and thymoma. <i>Aging</i> , 2019 , 11, 6422-6439	5.6	14	
195	Electrocatalytic reduction of N2 and nitrogen-incorporation process on dopant-free defect graphene. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 55-61	13	14	
194	Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production. <i>Chemical Engineering Journal</i> , 2021 , 406, 126838	14.7	14	
193	Marimo-Bead-Supported Core-Shell Nanocomposites of Titanium Nitride and Chromium-Doped Titanium Dioxide as a Highly Efficient Water-Floatable Green Photocatalyst. <i>ACS Applied Materials & Materials (ACS Applied Materials & Materials (ACS Applied Materials & Materials)</i>	9.5	13	
192	Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118027	21.8	13	
191	Enhanced photocatalytic properties of biomimetic Ag/AgCl heterostructures. <i>RSC Advances</i> , 2014 , 4, 31795-31798	3.7	13	
190	Titania nanotubes and fullerenes C60 assemblies and their photocatalytic activity under visible light. <i>Ceramics International</i> , 2014 , 40, 1297-1302	5.1	13	
189	Exceptional enhancement of H2 production in alkaline environment over plasmonic Au/TiO2 photocatalyst under visible light. <i>APL Materials</i> , 2015 , 3, 104401	5.7	13	
188	Photocatalytic Properties and Electronic Structure of a Novel Series of Solid Photocatalysts, Bi2 RNbO7 (R = Y, Rare Earth). <i>Topics in Catalysis</i> , 2003 , 22, 107-110	2.3	13	
187	Some structural and photophysical properties of two functional double oxides Bi2MTaO7 (M = Ga and In). <i>Journal of Alloys and Compounds</i> , 2004 , 377, 248-252	5.7	13	

186	Boron Dopant Induced Electron-Rich Bismuth for Electrochemical CO Reduction with High Solar Energy Conversion Efficiency. <i>Small</i> , 2021 , 17, e2101128	11	13
185	Hematite homojunctions without foreign element doping for efficient and stable overall water splitting. <i>RSC Advances</i> , 2016 , 6, 62263-62269	3.7	13
184	Kopplung von Solarenergie und Wilmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. <i>Angewandte Chemie</i> , 2020 , 132, 8092-8111	3.6	13
183	Solar-Driven WaterCas Shift Reaction over CuOx/Al2O3 with 1.1 % of Light-to-Energy Storage. <i>Angewandte Chemie</i> , 2019 , 131, 7790-7794	3.6	12
182	Metal-Reduced WO3½ Electrodes with Tunable Plasmonic Resonance for Enhanced Photoelectrochemical Water Splitting. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3569-3576	6.1	12
181	The Role of Ni-Based Cocatalyst in Inhomogeneous RVO4 Photocatalyst Systems (R = Y, Gd). Journal of Physical Chemistry C, 2014 , 118, 12845-12854	3.8	12
180	Solid-base loaded WO3 photocatalyst for decomposition of harmful organics under visible light irradiation. <i>APL Materials</i> , 2015 , 3, 104411	5.7	12
179	Constructing a multicomponent junction for improved visible-light photocatalytic performance induced by Au nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 2173-6	5.8	12
178	Crystal structure of layered perovskite compound, Li2LaTa2O6N. <i>Powder Diffraction</i> , 2011 , 26, 4-8	1.8	12
177	Role of Modification Agent Coverage in Hydrogen Generation by the Reaction of Al with Water. Journal of the American Ceramic Society, 2010 , 93, 2534-2536	3.8	12
176	Photoinduced degradation of organic dye over LiBiO3 under illumination of white fluorescent light. <i>Journal of Materials Research</i> , 2010 , 25, 177-181	2.5	12
175	Preparation and photocatalytic property of LiCr(WO4)2. <i>Journal of Alloys and Compounds</i> , 2009 , 485, 346-350	5.7	12
174	Inorganic alkaline-sols as precursors for rapid synthesis of ETS-10 microporous titanosilicates and their photocatalytic reforming of methanol under visible-light irradiation. <i>Catalysis Communications</i> , 2009 , 11, 261-265	3.2	12
173	Electrical resistivity, oxidation resistivity and hardness of single crystal compounds in the Er R h B system. <i>Journal of Alloys and Compounds</i> , 1998 , 280, 65-70	5.7	12
172	R-Dependency of the Hardness of Perovskite-Type RRh3B Compounds (R = La, Gd, Lu and Sc). Japanese Journal of Applied Physics, 2001 , 40, 6037-6038	1.4	12
171	Integrated analysis of pseudogene RP11-564D11.3 expression and its potential roles in hepatocellular carcinoma. <i>Epigenomics</i> , 2019 , 11, 267-280	4.4	12
170	Efficient photocatalytic conversion of CH into ethanol with O over nitrogen vacancy-rich carbon nitride at room temperature. <i>Chemical Communications</i> , 2021 , 57, 871-874	5.8	12
169	La,Al-Codoped SrTiO3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. <i>ACS Catalysis</i> , 2021 , 11, 11429-11439	13.1	12

(2020-2021)

168	Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120440	21.8	12
167	Interfacing Photosynthetic Membrane Protein with Mesoporous WO Photoelectrode for Solar Water Oxidation. <i>Small</i> , 2018 , 14, e1800104	11	11
166	Effect of band structure on the hot-electron transfer over Au photosensitized brookite TiO2. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3409-12	3.6	11
165	Preparation and characterization of visible light sensitive Fe- and Ta-codoped TiO2 photocatalyst. <i>Journal of Materials Research</i> , 2010 , 25, 110-116	2.5	11
164	Correlation of crystal structures, electronic structures and photocatalytic properties in W-based oxides. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 125402	3	11
163	Synthesis, magnetic and electrical transport properties of the Bi2InNbO7 compound. <i>Solid State Communications</i> , 2000 , 116, 259-263	1.6	11
162	Growth and Superconductivity of a New Ternary Intermetallic Compound, Ta5Ga2Sn. <i>Japanese Journal of Applied Physics</i> , 1989 , 28, 1519-1520	1.4	11
161	Photothermal catalysts for hydrogenation reactions. <i>Chemical Communications</i> , 2021 , 57, 1279-1294	5.8	11
160	Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. <i>Joule</i> , 2021 , 5, 3235-3251	27.8	11
159	Targeted removal of interfacial adventitious carbon towards directional charge delivery to isolated metal sites for efficient photocatalytic H2 production. <i>Nano Energy</i> , 2020 , 76, 105077	17.1	10
158	Identification of long noncoding RNA RP11-169F17.1 and RP11-669N7.2 as novel prognostic biomarkers of stomach adenocarcinoma based on integrated bioinformatics analysis. <i>Epigenomics</i> , 2019 , 11, 1307-1321	4.4	10
157	Fullerene nanowhiskers at liquid I quid interface: A facile template for metal oxide (TiO2, CeO2) nanofibers and their photocatalytic activity. <i>Materials Chemistry and Physics</i> , 2011 , 130, 211-217	4.4	10
156	Enhanced N-doping efficiency and photocatalytic H2 evolution rate of InNbO4 by mechanochemical activation. <i>Journal of Materials Research</i> , 2010 , 25, 159-166	2.5	10
155	Single-crystal growth of silver-lead oxide Ag5Pb2O6 from fused nitrates. <i>Journal of Crystal Growth</i> , 2002 , 241, 347-351	1.6	10
154	Single crystal growth and characterization of a new bismuth indium niobate compound, Bi5In2Nb3O18\(\textbf{Bi}\). Journal of Alloys and Compounds, 1999 , 292, 72-76	5.7	10
153	Relaxation of crystallographic defects in YBa2Cu3O7Ithin films by heat treatment and its effects on Tc. <i>Physica C: Superconductivity and Its Applications</i> , 1995 , 254, 113-123	1.3	10
152	Photogenerated Charge Carriers Dynamics on La- and/or Cr-Doped SrTiO3 Nanoparticles Studied by Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1292-1302	3.8	10
151	Constructing Chemical Interaction between Hematite and Carbon Nanosheets with Single Active Sites for Efficient Photo-Electrochemical Water Oxidation. <i>Small Methods</i> , 2020 , 4, 2000577	12.8	10

150	Molecular-level understanding of the deactivation pathways during methanol photo-reforming on Pt-decorated TiO2. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 118980	21.8	10
149	Lipolysis and Lipid Oxidation during Processing of Chinese Traditional Dry-Cured White Amur Bream (Parabramis pekinensis). <i>Journal of Aquatic Food Product Technology</i> , 2017 , 26, 719-730	1.6	9
148	Enhanced Photocatalytic CO2 Reduction over TiO2 Using Metalloporphyrin as the Cocatalyst. <i>Catalysts</i> , 2020 , 10, 654	4	9
147	Significant enhancement in photocatalytic activity of (GaN)1¼(ZnO)x nanowires via solubility and crystal facet tailoring. <i>AIP Advances</i> , 2018 , 8, 015206	1.5	9
146	Preparation of fine, uniform nitrogen- and sulfur-modified TiO nanoparticles from titania nanotubes. <i>Science and Technology of Advanced Materials</i> , 2010 , 11, 055001	7.1	9
145	Crystal growth and characterizations of ErRh3B2. <i>Journal of Alloys and Compounds</i> , 1997 , 248, 18-23	5.7	9
144	Molten metal flux growth and properties of CrSi2. <i>Journal of Alloys and Compounds</i> , 2004 , 383, 319-321	5.7	9
143	Growth and characterization of Va-Sn-Ga (Va = Ta, Nb, V) superconducting compounds. <i>Journal of Crystal Growth</i> , 1990 , 99, 969-974	1.6	9
142	Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction. <i>Transactions of Tianjin University</i> , 2020 , 26, 470-478	2.9	9
141	In Situ Assembly of MoSx Thin-Film through Self-Reduction on p-Si for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2021 , 31, 2007071	15.6	9
140	A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120268	21.8	9
139	Photophysical and photocatalytic properties of Li2M(WO4)2 (M = Co and Ni). <i>Journal of Materials Research</i> , 2008 , 23, 3309-3315	2.5	8
138	Temperature dependence of lattice parameters in \square ? Au \square 9.5at.%Cd martensite and the relationship between parent and martensite. <i>Scripta Materialia</i> , 2003 , 49, 291-295	5.6	8
137	Hardness and oxidation resistance of perovskite-type borocarbide system YRh3BxC1☑ (0?x?1). <i>Journal of Alloys and Compounds</i> , 2003 , 354, 198-201	5.7	8
136	Boron Tarbon Atomic Ratio Dependence on the Hardness and Oxidation Resistance of Solid Solutions of Perovskite-Type Borocarbide YRh3BxC1-x(0?x?1). <i>Japanese Journal of Applied Physics</i> , 2002 , 41, 3031-3032	1.4	8
135	Machine Learning in Screening High Performance Electrocatalysts for CO Reduction <i>Small Methods</i> , 2021 , 5, e2100987	12.8	8
134	Fabrication of a TiO/FeO Core/Shell Nanostructure by Pulse Laser Deposition toward Stable and Visible Light Photoelectrochemical Water Splitting. <i>ACS Omega</i> , 2020 , 5, 19861-19867	3.9	8
133	Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120519	21.8	8

132	Engineering Heterogeneous NiS /NiS Cocatalysts with Progressive Electron Transfer from Planar p-Si Photocathodes for Solar Hydrogen Evolution <i>Small Methods</i> , 2021 , 5, e2001018	12.8	8	
131	Doping Ba into strontium titanate for enhanced photocatalytic oxygen evolution over its supported Au-based catalysts. <i>Catalysis Communications</i> , 2017 , 99, 127-130	3.2	7	
130	Band-Gap Engineering of NaNbO3for Photocatalytic H2Evolution with Visible Light. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-6	2.1	7	
129	2-propanol photodegradation over molybdates: effects of chemical compositions and electronic structures. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 085402	3	7	
128	Cold-welding fabrication of highly ordered gold nanochannel monolayers in aqueous medium. <i>Chemical Communications</i> , 2010 , 46, 6912-4	5.8	7	
127	Nanoscale calcium bismuth mixed oxide with enhanced photocatalytic performance under visible light. <i>Applied Catalysis A: General</i> , 2010 , 382, 190-196	5.1	7	
126	Dissociation of water molecule at three-fold oxygen coordinated V site on the InVO4 (001) surface. <i>Applied Surface Science</i> , 2008 , 255, 679-681	6.7	7	
125	BoronDarbon atomic ratio dependence on the hardness and oxidation resistance of perovskite-type solid solution ScRh3B C1\(\textstyle{\textstyle{\textstyle{10}}}\) ournal of Alloys and Compounds, 2004 , 375, 217-220	5.7	7	
124	Search for perovskite-type new borides in the Sc-TM-B (TM = Ti, V, Cr, Mn, Fe, Co, and Ni) systems. Journal of Alloys and Compounds, 2004 , 383, 294-297	5.7	7	
123	Photocatalytic O2 evolution with the visible-light-driven photocatalysts M3V2O8 (M = Mg, Zn). <i>Research on Chemical Intermediates</i> , 2005 , 31, 433-439	2.8	7	
122	Photophysical and photocatalytic properties of the visible-light-driven photocatalysts BaIn0.5Nb0.5O3, BaCo1/3Nb2/3O3 and BaNi1/3Nb2/3O3. <i>Research on Chemical Intermediates</i> , 2005 , 31, 463-475	2.8	7	
121	Efficient photocatalytic CO2 reduction mediated by transitional metal borides: metal site-dependent activity and selectivity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21833-21841	13	7	
120	Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt. <i>ChemCatChem</i> , 2020 , 12, 3838-3842	5.2	7	
119	Self-Induced Strain in 2D Chalcogenide Nanocrystals with Enhanced Photoelectrochemical Responsivity. <i>Chemistry of Materials</i> , 2020 , 32, 2774-2781	9.6	6	
118	Lattice oxygen assisted room-temperature catalytic process: Secondary alcohol dehydrogenation over Au/birnessite photocatalyst. <i>Applied Catalysis A: General</i> , 2016 , 521, 149-153	5.1	6	
117	Enhancing the photocatalytic activity and photostability of zinc oxide nanorod arrays via graphitic carbon mediation. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 973-981	11.3	6	
116	Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst 2010 , 293-295		6	
115	Synthesis and Characterization of New Quaternary BorocarbidesRRh2B2C (R=Rare Earth). <i>Journal of Solid State Chemistry</i> , 1997 , 133, 77-81	3.3	6	

114	Magnetic and structural properties of superconducting PrBa2Cu3Oy grown by the TSFZ method. Journal of Alloys and Compounds, 1998 , 275-277, 37-40	5.7	6
113	Compositional dependence of crystallization in the glass-ceramics system Bi2O3-In2O3-MnO2-B2O3. <i>Journal of Materials Science Letters</i> , 2000 , 19, 1987-1990		6
112	Structural disorder and relaxation in YBa2Cu3O7Ithin films and their influences on Tc. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 581-582	1.3	6
111	Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution. <i>Nano Energy</i> , 2022 , 95, 107028	17.1	6
110	Unravelling unsaturated edge S in amorphous NiSx for boosting photocatalytic H2 evolution of metastable phase CdS confined inside hydrophilic beads. <i>Applied Catalysis B: Environmental</i> , 2022 , 305, 121055	21.8	6
109	Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. Journal of Energy Chemistry, 2021 ,	12	6
108	Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120551	21.8	6
107	Discerning the mechanism of expedited interfacial electron transformation boosting photocatalytic hydrogen evolution by metallic 1T-WS2-induced photothermal effect. <i>Applied Catalysis B: Environmental</i> , 2022 , 310, 121295	21.8	6
106	Stable visible-light photocatalytic degradation of organic pollutant by silver salt of Ti-substituted Keggin-type polyoxotungstate. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 908-914	6.8	5
105	Effects of cation concentration on photocatalytic performance over magnesium vanadates. <i>APL Materials</i> , 2015 , 3, 104405	5.7	5
104	Solid-state 93Nb NMR Study of Nitrogen-doped Lamellar Niobic Acid. <i>Chemistry Letters</i> , 2013 , 42, 1223-	112724	5
103	Photoassisted fabrication of zinc indium oxide/oxysulfide composite for enhanced photocatalytic H evolution under visible-light irradiation. <i>Science and Technology of Advanced Materials</i> , 2012 , 13, 055001	7.1	5
102	Photocatalytic properties of MIn(WO4)2 (M = Li, Na, and K). <i>Journal of Materials Research</i> , 2007 , 22, 958	-2654	5
101	Sol-gel synthesis and characterization of the photocatalyst BaCo1/3Nb2/3O3. <i>Journal of Materials Science</i> , 2006 , 41, 1131-1135	4.3	5
100	Decomposition of acetaldehyde on a Bi-based semiconductor. <i>Research on Chemical Intermediates</i> , 2005 , 31, 499-503	2.8	5
99	Superconducting and non-superconducting PrBa2Cu3O7. Bulletin of Materials Science, 1999, 22, 257-26.	31.7	5
98	Synthesis of Perovskite Type-RERh3Bx (RE= La, Lu) Compounds and Study on Their Boron Nonstoichiometry and Hardness <i>Journal of the Ceramic Society of Japan</i> , 2000 , 108, 683-686		5
97	Cl modification for effective promotion of photoelectrochemical water oxidation over BiVO. <i>Chemical Communications</i> , 2020 , 56, 13153-13156	5.8	5

96	Hierarchically Assembling CoFe Prussian Blue Analogue Nanocubes on CoP Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting <i>Small Methods</i> , 2021 , 5, e2100125	12.8	5
95	Simultaneous determination of Ltx and Ltxd in cured meat products by LC/MS/MS. <i>Food Chemistry</i> , 2016 , 210, 338-43	8.5	5
94	CO tolerance of Pt/FeO catalyst in both thermal catalytic H oxidation and electrochemical CO oxidation: the effect of Pt deficit electron state. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 29607-29	g 15	5
93	Tridecaboron diphosphide: a new infrared light active photocatalyst for efficient CO2 photoreduction under mild reaction conditions. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2421-2428	13	5
92	Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency. <i>IScience</i> , 2021 , 24, 102056	6.1	5
91	Cost-Efficient Photovoltaic-Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron-Molybdenum Oxides for Potential Large-Scale Hydrogen Production. <i>Small</i> , 2021 , 17, e2102	222	5
90	Hydrated electrons mediated in-situ construction of cubic phase CdS/Cd thin layer on a millimeter-scale support for photocatalytic hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 769-781	9.3	5
89	Plasmon-Enhanced CO Selective Oxidation in H2 over Pt Nanoclusters Supported on Metallic Molybdenum Dioxide Nanocrystals. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2001657	4.6	5
88	Hematite photo-electrodes with multiple ultrathin SiOx interlayers towards enhanced photoelectrochemical properties. <i>Electrochemistry Communications</i> , 2014 , 48, 17-20	5.1	4
87	A Visible-light-responsive Photocatalyst of Nitrogen-doped Solid-acid HNb3O8-N Studied by Ultrahigh-field 1H MAS NMR and 1HB3Nb/1HB5N HETCOR NMR in Solids. <i>Chemistry Letters</i> , 2014 , 43, 80-82	1.7	4
86	Hybridization of sugar alcohols into brucite interlayers via a melt intercalation process. <i>Journal of Colloid and Interface Science</i> , 2012 , 368, 578-83	9.3	4
85	Photocatalysis and Photoelectrochemistry for Solar Fuels. <i>International Journal of Photoenergy</i> , 2014 , 2014, 1-2	2.1	4
84	Response to comment on "High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction". <i>ACS Applied Materials & Communication</i> , 5, 8262	9.5	4
83	Low temperature synthesis and visible light driven photocatalytic activity of highly crystalline mesoporous TiO2 particles. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8124-9	1.3	4
82	Solid Solution Range of Boron, Microhardness and Magnetic Properties of the Perovskite-Type GdRh3B Obtained by Arc-melting Synthesis. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L1436-L1439	1.4	4
81	Arc-melting synthesis and crystal chemistry of RT2B2(C) (R=rare earth, T=Rh, Co) compounds. Journal of Alloys and Compounds, 1998 , 275-277, 76-80	5.7	4
80	Pressure-induced Magnetic Transition in the Van Vleck Paramagnet PrCu2. <i>Journal of the Physical Society of Japan</i> , 2003 , 72, 1758-1762	1.5	4
79	Structural characterization and photocatalytic behavior of <code>#KInW2O8</code> . Research on Chemical Intermediates, 2005 , 31, 505-512	2.8	4

78	Growth, photophysical and structural properties of Bi2InNbO7. <i>Journal of Crystal Growth</i> , 2001 , 229, 462-466	1.6	4
77	Solid solution range of boron and properties of the perovskite-type NdRh3B. <i>Journal of Alloys and Compounds</i> , 2002 , 335, 191-195	5.7	4
76	Solar Light-induced Injection of Hot Electrons and Photocarriers for Synergistically Enhanced Photothermocatalysis Over Cu-Co/SrTiO3 Catalyst Towards Boosting CO Hydrogenation Into C2©14 Hydrocarbons. <i>Applied Catalysis B: Environmental</i> , 2022 , 121063	21.8	4
75	Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol. <i>Green Chemistry</i> ,	10	4
74	Engineering interfacial charge transfer channel for efficient photocatalytic H2 evolution: the interplay of CoPx and Ca2+ dopant. <i>Applied Catalysis B: Environmental</i> , 2021 , 120887	21.8	4
73	Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. <i>Nano Research</i> ,1	10	4
72	Wafer-scale Si nanoconed arrays induced syngas in the photoelectrochemical CO2 reduction. <i>Catalysis Today</i> , 2020 , 339, 321-327	5.3	4
71	Plum Pudding-Like Electrocatalyst of N-Doped SnOx@Sn Loaded on Carbon Matrix to Construct Photovoltaic CO2 Reduction System with Solar-to-Fuel Efficiency of 11.3%. <i>Solar Rrl</i> , 2020 , 4, 2000116	7.1	4
70	Efficient photodegradation of 2-chloro-4-nitrophenol over Fe-doped BiOCl nanosheets with oxygen vacancy. <i>Catalysis Science and Technology</i> ,	5.5	4
69	A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions. <i>Angewandte Chemie</i> , 2018 , 130, 17023-17026	3.6	4
68	Photo-thermal CO2 reduction with methane on group VIII metals: In situ reduced WO3 support for enhanced catalytic activity. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 1976-1982	11.3	4
67	Photothermal Catalysis: Targeting Activation of CO2 and H2 over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2 Methanation in Flow-Type System (Adv. Energy Mater. 5/2017). <i>Advanced Energy Materials</i> , 2017 , 7,	21.8	3
66	Efficient photochemical oxygen generation from water by phosphorus-doped H2MoO5. <i>Chemical Communications</i> , 2014 , 50, 12185-8	5.8	3
65	Adsorption and Photodegradation Reactions of Anionic Dye on Zn-Al-substituting Layered Double Hydroxide. <i>Transactions of the Materials Research Society of Japan</i> , 2010 , 35, 813-816	0.2	3
64	Synthesis and Properties of In2-xZnxCu2O5 (x = 0, 1) Compounds. <i>Journal of Materials Science Letters</i> , 1998 , 17, 1191-1193		3
63	Chemical state and properties of the Nb5Sn2Ga grown by the self-component flux method using tin as a solvent. <i>Journal of Alloys and Compounds</i> , 1998 , 281, 196-201	5.7	3
62	Hardness and Oxidation Resistance of Perovskite-type Solid Solution of the ScRh3BBcRh3C System. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 5213-5214	1.4	3
61	Substitution Effects of the Trivalent Cations M3+ on the Photophysical and Photocatalytic Properties of In12NiM2Ti10O42 (M = Al, Cr, Ga). <i>Materials Transactions</i> , 2005 , 46, 2699-2703	1.3	3

(2003-2005)

60	Photocatalytic activity of silver-loaded or unloaded titanium dioxide coating in the removal of hydrogen sulfide. <i>Research on Chemical Intermediates</i> , 2005 , 31, 441-448	2.8	3
59	Crystal structure in PrBa2Cu4O8 single crystals. <i>Journal of Physics and Chemistry of Solids</i> , 2001 , 62, 191	-394	3
58	Crystal growth and structural properties of RRh3B2 (R=Gd, Er, Tm) compounds. <i>Journal of Crystal Growth</i> , 2001 , 229, 521-526	1.6	3
57	Possible origins of superconductivity in TSFZ-grown PrBa2Cu3Ox crystals. <i>Physica C:</i> Superconductivity and Its Applications, 2000 , 341-348, 525-526	1.3	3
56	Optical and electrical properties of solid photocatalyst Bi2InNbO7. <i>Journal of Materials Research</i> , 2000 , 15, 2073-2075	2.5	3
55	Preparation and magnetic properties of In2 $ \frac{1}{12} $		3
54	Possible origins of superconductivity in PrBa2Cu3Ox compound viewed from results of single crystal structure study. <i>Journal of Alloys and Compounds</i> , 1999 , 288, 319-325	5.7	3
53	Recent Progress on Exploring Stable Metal©rganic Frameworks for Photocatalytic Solar Fuel Production. <i>Solar Rrl</i> , 2020 , 4, 2070084	7.1	3
52	Interfacial-Bonding Ti NI Boosts Efficient Photocatalytic H2 Evolution in Close Coupling g-C3N4/TiO2. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12012-12018	3.8	3
51	Study on the enhancement of photocatalytic environment purification through ubiquitous-red-clay loading. <i>SN Applied Sciences</i> , 2019 , 1, 1	1.8	3
50	Breaking Platinum Nanoparticles to Single-Atomic Pt-C4 Co-catalysts for Enhanced Solar-to-Hydrogen Conversion. <i>Angewandte Chemie</i> , 2021 , 133, 2571-2577	3.6	3
49	A surface-alkalinized Ti3C2 MXene as an efficient cocatalyst for enhanced photocatalytic CO2 reduction over ZnO. <i>Catalysis Science and Technology</i> , 2021 , 11, 4953-4961	5.5	3
48	Selective Photothermal Reduction of CO2 to CO over Ni-Nanoparticle/N-Doped CeO2 Nanocomposite Catalysts. <i>ACS Applied Nano Materials</i> ,	5.6	3
47	Insights into the Operation of Noble-Metal-Free Cocatalyst 1T-WS -Decorated Zn Cd S for Enhanced Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2021 , 14, 4752-4763	8.3	3
46	Photocatalysis: Light-Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water (Adv. Mater. 31/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2
45	Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure. <i>Applied Physics Letters</i> , 2014 , 104, 163105	3.4	2
44	High-Temperature Solution Growth and Characterization of Chromium Disilicide. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 7292-7293	1.4	2
43	29 Effect of 3d transition-metal (M) doping in In1-xMx TaO4 photocatalysts on water splitting under visible light irradiation. <i>Studies in Surface Science and Catalysis</i> , 2003 , 145, 165-168	1.8	2

42	Single Crystalline MgB2Superconductor. <i>Journal of the Physical Society of Japan</i> , 2002 , 71, 320-322	1.5	2
41	Doping effects in electrical and magnetic properties of Ba2klySrxLayCu3O4Cl2 (x=0~2.0, y=0~0.4) compounds. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 489-490	1.3	2
40	Relationship between Boron Content and Hardness and Oxidation Resistance of the Nonstoichiometric Perovskite Type-ScRh3Bx Compound <i>Journal of the Ceramic Society of Japan</i> , 1999 , 107, 546-550		2
39	Precisely Tailoring Nitrogen Defects in Carbon Nitride for Efficient Photocatalytic Overall Water Splitting ACS Applied Materials & Interfaces, 2022,	9.5	2
38	Efficient electrochemical water oxidation to hydrogen peroxide over intrinsic carbon defect-rich carbon nanofibers. <i>Journal of Materials Chemistry A</i> ,	13	2
37	Zr-Al co-doped SrTiO with suppressed charge recombination for efficient photocatalytic overall water splitting. <i>Chemical Communications</i> , 2021 , 57, 10640-10643	5.8	2
36	SnO2½/Sb2O3 composites synthesized by mechanical milling method with excellent photocatalytic properties for isopropyl alcohol oxidation. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 8564-8577	2.1	1
35	Innentitelbild: Photothermal Conversion of CO2 into CH4 with H2 over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production (Angew. Chem. 43/2014). <i>Angewandte Chemie</i> , 2014 , 126, 11568-11568	3.6	1
34	Photodriven CO2 Reduction Assisted by Surface Plasmon Resonance of Nanometals. <i>Hyomen Kagaku</i> , 2017 , 38, 280-285		1
33	Crystal structure of silver metagermanate, Ag2GeO3. <i>Powder Diffraction</i> , 2010 , 25, 15-18	1.8	1
32	Green-Chemical Synthesis of ETS-4 Zeotypes for Photocatalytic Hydrogen Production. <i>Advanced Materials Research</i> , 2012 , 584, 366-370	0.5	1
31	Two-Dimensional Clustering of Nanoparticles on the Surface of Cellulose Fibers. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12022-12027	3.8	1
30	Photophysical and Photocatalytic Properties of AgInW2O8 ChemInform, 2004, 35, no		1
29	Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M: Mg, Ni, Zn) <i>ChemInform</i> , 2005 , 36, no		1
28	The physical properties of the new quaternary borocarbides RRh2B2C (R=Gd, Sm and Nd). <i>Physica B: Condensed Matter</i> , 2000 , 293, 91-97	2.8	1
27	Characterization of Superconducting PrBa2Cu3Ox. <i>International Journal of Modern Physics B</i> , 1998 , 12, 3242-3250	1.1	1
26	Changing of the Lattice Parameter with Boron or Carbon Content x in Nonstoichiometric Perovskite-Type YRh3Bx, YRh3Cx and YRh3BxC1-x Compounds <i>Journal of the Ceramic Society of Japan</i> , 1999 , 107, 648-651		1
25	Synthesis and the Physical Properties of the Single Crystals of a New Quaternary Compound ErRh2B2C Using Molten Copper as a Flux. <i>Journal of the Ceramic Society of Japan</i> , 1996 , 104, 1117-1120		1

24	Defects in YBa2Cu3O7IThin Films and Their Influences on Tc. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 401, 429		1
23	Artificial Photosynthesis: Fundamentals, Challenges, and Strategies. <i>NIMS Monographs</i> , 2022 , 233-263	0.3	1
22	Plasmonic Metal Nanoparticles for Artificial Photosynthesis: Advancements, Mechanisms, and Perspectives. <i>Solar Rrl</i> , 2021 , 5, 2100611	7.1	1
21	Synergy between Confined Cobalt Centers and Oxygen Defects on ⊞e2O3 Platelets for Efficient Photocatalytic CO2 Reduction. <i>Solar Rrl</i> , 2022 , 6, 2100833	7.1	1
20	Structural Differences of Superconducting and Non-Superconducting PrBa2Cu3Ox Crystals 1998 , 215-2	218	1
19	Photocarrier-assisted photothermocatalysis of Fischer Tropsch synthesis for the enhanced yield of C2 124 hydrocarbons over a Co/SrTiO3 catalyst. <i>Catalysis Science and Technology</i> ,	5.5	1
18	Efficient Photocatalytic Conversion of Methane into Ethanol over P-Doped g-C3N4 under Ambient Conditions. <i>Energy & Conditions</i> , Fuels, 2022 , 36, 3929-3937	4.1	1
17	Photothermal tandem catalysis for CO2 hydrogenation to methanol. <i>CheM</i> , 2022 , 8, 1181-1183	16.2	1
16	Structural and Componential Engineering of CoP&CoP@N-C Nanoarrays for Energy-Efficient Hydrogen Production from Water Electrolysis. <i>ACS Applied Materials & District Research</i> , 13, 56064-	58672	0
15	A synergetic strategy to construct anti-reflective and anti-corrosive Co-P/WSx/Si photocathode for durable hydrogen evolution in alkaline condition. <i>Applied Catalysis B: Environmental</i> , 2021 , 120954	21.8	O
14	Non-stoichiometric Ag-In-S quantum dots for efficient photocatalytic CO2 reduction: Ag/In molar ratio dependent activity and selectivity. <i>Journal of Catalysis</i> , 2021 , 401, 271-278	7.3	0
13	REktitelbild: Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation (Angew. Chem. 20/2017). <i>Angewandte Chemie</i> , 2017 , 129, 5724-5724	3.6	
12	Stressed Lattice Creating New Electric Field for Photoelectrocatalysis. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 725-726	2.2	
11	Plum Pudding-Like Electrocatalyst of N-Doped SnOx@Sn Loaded on Carbon Matrix to Construct Photovoltaic CO2 Reduction System with Solar-to-Fuel Efficiency of 11.3%. <i>Solar Rrl</i> , 2020 , 4, 2070072	7.1	
10	Preface for Special Topic: Photocatalysis. <i>APL Materials</i> , 2015 , 3, 103801	5.7	
9	The Dynamics of Water Molecules on YVO4 Photo-Catalyst Surface. <i>Ceramic Transactions</i> , 2010 , 237-24	10.1	
8	Electronic Structure Properties of the Photo-Catalysts YVO4 and InVO4 Slab Systems with Water Molecules Adsorbed on the Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1171, 96		
7	A study of superconducting crystals by diffuse scattering measurement. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 2585-2592	1.8	

6	Hardness and Oxidation Resistance of Nonstoichiometric ErRh3Bx-Perovskite <i>Journal of the Ceramic Society of Japan</i> , 2000 , 108, 1011-1015	
5	Pressure Effects on Oxygen Deficient Superconducting PrBa2Cu3Ox. <i>International Journal of Modern Physics B</i> , 1998 , 12, 3235-3241	1.1
4	Synthesis of the GdCo2B2Cx (x=0-1) and Study on the Changing of the Crystal Structure with Carbon Content, x. <i>Journal of the Ceramic Society of Japan</i> , 1998 , 106, 299-302	
3	Substitution Effects of Ba by Sr and La in Physical and Structural Properties of Ba2Cu3O4Cl2 Compounds 2000 , 113-115	
2	Efficient Methanol-to-Olefins Conversion Via Photothermal Effect Over TiN/SAPO-34 Catalyst. <i>Catalysis Letters</i> ,1	2.8
1	PbS1\(\mathbb{B}\)Sex-Quantum-Dot@MWCNT/P3HT Nanocomposites with Tunable Photoelectric Conversion Performance. <i>Inorganics</i> , 2021 , 9, 87	2.9