List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoâ€photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 2012, 24, 229-251.	11.1	3,375
2	Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625-627.	13.7	2,995
3	An orthophosphate semiconductor with photooxidation properties under visible-lightÂirradiation. Nature Materials, 2010, 9, 559-564.	13.3	1,807
4	Facet Effect of Single-Crystalline Ag ₃ PO ₄ Sub-microcrystals on Photocatalytic Properties. Journal of the American Chemical Society, 2011, 133, 6490-6492.	6.6	1,255
5	Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation. Journal of the American Chemical Society, 2010, 132, 6294-6295.	6.6	1,176
6	MoS ₂ /Graphene Cocatalyst for Efficient Photocatalytic H ₂ Evolution under Visible Light Irradiation. ACS Nano, 2014, 8, 7078-7087.	7.3	885
7	Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie - International Edition, 2004, 43, 4463-4466.	7.2	721
8	Stateâ€ofâ€theâ€Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Advanced Functional Materials, 2015, 25, 998-1013.	7.8	706
9	Singleâ€Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Advanced Energy Materials, 2018, 8, 1701343.	10.2	705
10	Efficient Visibleâ€Lightâ€Driven Carbon Dioxide Reduction by a Singleâ€Atom Implanted Metal–Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 14310-14314.	7.2	612
11	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2016, 26, 6822-6829.	7.8	583
12	Hierarchical WO ₃ Hollow Shells: Dendrite, Sphere, Dumbbell, and Their Photocatalytic Properties. Advanced Functional Materials, 2008, 18, 1922-1928.	7.8	548
13	Targeted Synthesis of 2H―and 1Tâ€Phase MoS ₂ Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 10033-10041.	11.1	534
14	Lightâ€5witchable Oxygen Vacancies in Ultrafine Bi ₅ O ₇ Br Nanotubes for Boosting Solarâ€Driven Nitrogen Fixation in Pure Water. Advanced Materials, 2017, 29, 1701774.	11.1	533
15	Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Physical Chemistry Chemical Physics, 2011, 13, 10071.	1.3	519
16	Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2013, 1, 5766.	5.2	507
17	Photocatalytic Decomposition of Organic Contaminants by Bi2WO6Under Visible Light Irradiation. Catalysis Letters, 2004, 92, 53-56.	1.4	494
18	Ultrathin W ₁₈ O ₄₉ Nanowires with Diameters below 1â€nm: Synthesis, Nearâ€Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. Angewandte Chemie - International Edition, 2012, 51, 2395-2399.	7.2	492

#	Article	IF	CITATIONS
19	Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chemical Communications, 2010, 46, 1893-1895.	2.2	489
20	Nanometals for Solarâ€toâ€Chemical Energy Conversion: From Semiconductorâ€Based Photocatalysis to Plasmonâ€Mediated Photocatalysis and Photoâ€Thermocatalysis. Advanced Materials, 2016, 28, 6781-6803.	11.1	471
21	Electrostatic Selfâ€Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal–Organic Framework for Enhanced Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2015, 25, 5360-5367.	7.8	443
22	Active Sites Implanted Carbon Cages in Core–Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. ACS Nano, 2016, 10, 684-694.	7.3	426
23	Recent advances in TiO ₂ -based photocatalysis. Journal of Materials Chemistry A, 2014, 2, 12642.	5.2	418
24	Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy and Environmental Science, 2011, 4, 4517.	15.6	408
25	Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chemical Society Reviews, 2015, 44, 7808-7828.	18.7	406
26	Photothermal Conversion of CO ₂ into CH ₄ with H ₂ over Groupâ€VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. Angewandte Chemie - International Edition, 2014, 53, 11478-11482.	7.2	385
27	An Amineâ€Functionalized Iron(III) Metal–Organic Framework as Efficient Visibleâ€Light Photocatalyst for Cr(VI) Reduction. Advanced Science, 2015, 2, 1500006.	5.6	364
28	Constructing Solid–Gas-Interfacial Fenton Reaction over Alkalinized-C ₃ N ₄ Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm. Journal of the American Chemical Society, 2016, 138, 13289-13297.	6.6	364
29	Photoassisted Construction of Holey Defective gâ€C ₃ N ₄ Photocatalysts for Efficient Visibleâ€Lightâ€Driven H ₂ O ₂ Production. Small, 2018, 14, 1703142.	5.2	353
30	Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016, 138, 9128-9136.	6.6	341
31	Surface-Alkalinization-Induced Enhancement of Photocatalytic H ₂ Evolution over SrTiO ₃ -Based Photocatalysts. Journal of the American Chemical Society, 2012, 134, 1974-1977.	6.6	330
32	Photophysical and Photocatalytic Properties of SrTiO3Doped with Cr Cations on Different Sites. Journal of Physical Chemistry B, 2006, 110, 15824-15830.	1.2	325
33	In Situ Growth of Metal Particles on 3D Urchin-like WO ₃ Nanostructures. Journal of the American Chemical Society, 2012, 134, 6508-6511.	6.6	325
34	Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angewandte Chemie - International Edition, 2020, 59, 8016-8035.	7.2	323
35	Photophysical and Photocatalytic Properties of AgInW2O8. Journal of Physical Chemistry B, 2003, 107, 14265-14269.	1.2	310
36	Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7563-7572.	1.3	304

#	Article	IF	CITATIONS
37	Surfaceâ€Plasmonâ€Enhanced Photodriven CO ₂ Reduction Catalyzed by Metal–Organicâ€Frameworkâ€Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers. Advanced Materials, 2016, 28, 3703-3710.	11.1	300
38	A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 204, 335-345.	10.8	295
39	Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Science and Technology of Advanced Materials, 2011, 12, 034401.	2.8	292
40	Efficient Photocatalytic Decomposition of Acetaldehyde over a Solid-Solution Perovskite (Ag _{0.75} Sr _{0.25})(Nb _{0.75} Ti _{0.25})O ₃ under Visible-Light Irradiation. Journal of the American Chemical Society, 2008, 130, 2724-2725.	6.6	291
41	Natureâ€Inspired Environmental "Phosphorylation―Boosts Photocatalytic H ₂ Production over Carbon Nitride Nanosheets under Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2015, 54, 13561-13565.	7.2	287
42	Transition Metal Disulfides as Nobleâ€Metalâ€Alternative Co atalysts for Solar Hydrogen Production. Advanced Energy Materials, 2016, 6, 1502555.	10.2	279
43	Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. Journal of Materials Chemistry, 2012, 22, 6575.	6.7	274
44	β-AgAl _{1-<i>x</i>} Ga _{<i>x</i>} O ₂ Solid-Solution Photocatalysts: Continuous Modulation of Electronic Structure toward High-Performance Visible-Light Photoactivity. Journal of the American Chemical Society, 2011, 133, 7757-7763.	6.6	272
45	Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chemical Communications, 2012, 48, 3748.	2.2	268
46	Effects of Substituting Sr2+ and Ba2+ for Ca2+on the Structural Properties and Photocatalytic Behaviors of CaIn2O4. Chemistry of Materials, 2004, 16, 1644-1649.	3.2	267
47	Enhanced Incident Photon-to-Electron Conversion Efficiency of Tungsten Trioxide Photoanodes Based on 3D-Photonic Crystal Design. ACS Nano, 2011, 5, 4310-4318.	7.3	267
48	Integrating the g-C ₃ N ₄ Nanosheet with B–H Bonding Decorated Metal–Organic Framework for CO ₂ Activation and Photoreduction. ACS Nano, 2018, 12, 5333-5340.	7.3	263
49	Direct and Selective Photocatalytic Oxidation of CH ₄ to Oxygenates with O ₂ on Cocatalysts/ZnO at Room Temperature in Water. Journal of the American Chemical Society, 2019, 141, 20507-20515.	6.6	253
50	SuperconductingPrBa2Cu3Ox. Physical Review Letters, 1998, 80, 1074-1077.	2.9	252
51	Solar-Energy-Mediated Methane Conversion. Joule, 2019, 3, 1606-1636.	11.7	252
52	Anatase TiO ₂ Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H ₂ Evolution. Chemistry of Materials, 2013, 25, 405-411.	3.2	248
53	In situ surface alkalinized g-C ₃ N ₄ toward enhancement of photocatalytic H ₂ evolution under visible-light irradiation. Journal of Materials Chemistry A, 2016, 4, 2943-2950.	5.2	247
54	Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Letters, 2022, 7, 1043-1065.	8.8	247

#	Article	IF	CITATIONS
55	Self-doped SrTiO3â^î^ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy and Environmental Science, 2011, 4, 4211.	15.6	244
56	Goldâ€Nanorodâ€Photosensitized Titanium Dioxide with Wideâ€Range Visibleâ€Light Harvesting Based on Localized Surface Plasmon Resonance. Angewandte Chemie - International Edition, 2013, 52, 6689-6693.	7.2	244
57	The Effects of Crystal Structure and Electronic Structure on Photocatalytic H ₂ Evolution and CO ₂ Reduction over Two Phases of Perovskite-Structured NaNbO ₃ . Journal of Physical Chemistry C, 2012, 116, 7621-7628.	1.5	243
58	Fe ₃ O ₄ /WO ₃ Hierarchical Core–Shell Structure: Highâ€Performance and Recyclable Visible‣ight Photocatalysis. Chemistry - A European Journal, 2011, 17, 5145-5154.	1.7	240
59	Drastic Layerâ€Numberâ€Dependent Activity Enhancement in Photocatalytic H ₂ Evolution over <i>n</i> MoS ₂ /CdS (<i>n</i> ≥ 1) Under Visible Light. Advanced Energy Materials, 2015, 5, 1402279.	10.2	239
60	Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surfaceâ€Alkalinized Titanium Carbide MXene as Cocatalyst. ChemSusChem, 2018, 11, 1606-1611.	3.6	239
61	Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g ₃ N ₄ Nanosheets under Visible Light. Small, 2016, 12, 4431-4439.	5.2	237
62	Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. Journal of Chemical Physics, 2002, 117, 7313-7318.	1.2	231
63	Facet engineered Ag3PO4 for efficient water photooxidation. Energy and Environmental Science, 2013, 6, 3380.	15.6	231
64	Hematite Films Decorated with Nanostructured Ferric Oxyhydroxide as Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. Advanced Functional Materials, 2015, 25, 2686-2692.	7.8	223
65	Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au–Cu Alloy Nanoparticles Supported on SrTiO ₃ /TiO ₂ Coaxial Nanotube Arrays. Angewandte Chemie - International Edition, 2015, 54, 841-845.	7.2	223
66	Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22, 149-168.	8.2	223
67	Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Applied Catalysis B: Environmental, 2019, 259, 118088.	10.8	221
68	A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chemical Physics Letters, 2002, 356, 221-226.	1.2	220
69	Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials. Advanced Functional Materials, 2018, 28, 1803309.	7.8	212
70	Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In ₂ O _{3â''} <i>_x</i> Nanosheets with Bifunctional Oxygen Vacancies. Advanced Materials, 2020, 32, e1903915.	11.1	208
71	Anisotropy of superconductivity from MgB2 single crystals. Applied Physics Letters, 2001, 79, 2779-2781.	1.5	207
72	In situ oxidation synthesis of Ag/AgCl core–shell nanowires and their photocatalytic properties. Chemical Communications, 2009, , 6551.	2.2	206

#	Article	IF	CITATIONS
73	High-Active Anatase TiO ₂ Nanosheets Exposed with 95% {100} Facets Toward Efficient H ₂ Evolution and CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2013, 5, 1348-1354.	4.0	203
74	Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chemical Physics Letters, 2000, 332, 271-277.	1.2	201
75	Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Applied Catalysis B: Environmental, 2017, 200, 141-149.	10.8	198
76	Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy and Environmental Science, 2012, 5, 6304-6312.	15.6	196
77	Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. Journal of Materials Research, 2007, 22, 1859-1871.	1.2	195
78	Effects of molybdenum substitution on the photocatalytic behavior of BiVO4. Dalton Transactions, 2008, , 1426.	1.6	194
79	Ultrathin SnO ₂ Nanorods: Template- and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-Sensing, and Surface Adsorption Properties. Inorganic Chemistry, 2010, 49, 2302-2309.	1.9	193
80	Targeting Activation of CO ₂ and H ₂ over Ruâ€Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO ₂ Methanation in Flowâ€Type System. Advanced Energy Materials, 2017, 7, 1601657.	10.2	193
81	Nitrogenâ€doped Lamellar Niobic Acid with Visible Lightâ€responsive Photocatalytic Activity. Advanced Materials, 2008, 20, 3816-3819.	11.1	191
82	Engineering the Edges of MoS ₂ (WS ₂) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents. Journal of the American Chemical Society, 2016, 138, 14962-14969.	6.6	189
83	Superior Photocatalytic H ₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor, Advanced Materials 2017, 29, 1703258 Theoretical study of high photocatalytic performance of Ag <mml:math< td=""><td>11.1</td><td>188</td></mml:math<>	11.1	188
84	xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> PO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	1.1	186
85	display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nature Communications, 2019, 10, 2359.</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>	5.8	185
86	Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, e2200180.	11.1	184
87	Photocatalytic Degradation of Rhodamine B over Pb ₃ Nb ₄ O ₁₃ /Fumed SiO ₂ Composite under Visible Light Irradiation. Journal of Physical Chemistry C, 2007, 111, 13109-13116.	1.5	181
88	Co-ZIF-9/TiO ₂ nanostructure for superior CO ₂ photoreduction activity. Journal of Materials Chemistry A, 2016, 4, 15126-15133.	5.2	180
89	Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications. Journal of Materials Chemistry, 2012, 22, 14847.	6.7	179
90	Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. ACS Applied Materials & Amp; Interfaces, 2018, 10, 408-416.	4.0	179

#	Article	IF	CITATIONS
91	Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation. Chemical Physics Letters, 2003, 382, 175-179.	1.2	176
92	Decomposition of Organic Compounds over NaBiO3 under Visible Light Irradiation. Chemistry of Materials, 2007, 19, 198-202.	3.2	176
93	Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 2015, 166-167, 112-120.	10.8	175
94	Photoluminescence and photocatalytic properties of SrSnO3 perovskite. Chemical Physics Letters, 2006, 418, 174-178.	1.2	174
95	Efficient Visibleâ€Lightâ€Driven Carbon Dioxide Reduction by a Singleâ€Atom Implanted Metal–Organic Framework. Angewandte Chemie, 2016, 128, 14522-14526.	1.6	174
96	Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Applied Surface Science, 2007, 253, 8500-8506.	3.1	173
97	Wafer-Level Artificial Photosynthesis for CO ₂ Reduction into CH ₄ and CO Using GaN Nanowires. ACS Catalysis, 2015, 5, 5342-5348.	5.5	172
98	Conversion of Carbon Dioxide by Methane Reforming under Visibleâ€Light Irradiation: Surfaceâ€Plasmonâ€Mediated Nonpolar Molecule Activation. Angewandte Chemie - International Edition, 2015, 54, 11545-11549.	7.2	168
99	Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy, 2017, 36, 331-340.	8.2	168
100	Quantitative structure analyses ofYBa2Cu3O7â~'δthin films: Determination of oxygen content from x-ray-diffraction patterns. Physical Review B, 1993, 48, 7554-7564.	1.1	164
101	Efficient Photocatalysis on BaBiO ₃ Driven by Visible Light. Journal of Physical Chemistry C, 2007, 111, 12779-12785.	1.5	164
102	{Ta ₁₂ }/{Ta ₁₆ } Cluster-Containing Polytantalotungstates with Remarkable Photocatalytic H ₂ Evolution Activity. Journal of the American Chemical Society, 2012, 134, 19716-19721.	6.6	164
103	Photocatalytic CO ₂ conversion over alkali modified TiO ₂ without loading noble metal cocatalyst. Chemical Communications, 2014, 50, 11517-11519.	2.2	162
104	Metal nanoparticles induced photocatalysis. National Science Review, 2017, 4, 761-780.	4.6	161
105	Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO2. Chemistry of Materials, 2007, 19, 116-122.	3.2	160
106	Synthesis and Photocatalytic Activities of NaNbO ₃ Rods Modified by In ₂ O ₃ Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 6157-6162.	1.5	159
107	Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Scientific Reports, 2013, 3, 1667.	1.6	159
108	Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 301, 120814.	10.8	157

#	Article	IF	CITATIONS
109	A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nature Catalysis, 2021, 4, 1032-1042.	16.1	156
110	In situ synthesis of ordered mesoporous Co-doped TiO ₂ and its enhanced photocatalytic activity and selectivity for the reduction of CO ₂ . Journal of Materials Chemistry A, 2015, 3, 9491-9501.	5.2	155
111	The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2. Journal of Molecular Catalysis A, 2008, 284, 155-160.	4.8	154
112	Selective Activation of Benzyl Alcohol Coupled with Photoelectrochemical Water Oxidation via a Radical Relay Strategy. ACS Catalysis, 2020, 10, 4906-4913.	5.5	154
113	Correlation of Crystal Structures, Electronic Structures, and Photocatalytic Properties in a Series of Ag-based Oxides:  AgAlO ₂ , AgCrO ₂ , and Ag ₂ CrO ₄ . Journal of Physical Chemistry C, 2008, 112, 3134-3141.	1.5	152
114	Synthesis and photocatalytic properties of metastable β-Bi ₂ O ₃ stabilized by surface-coordination effects. Journal of Materials Chemistry A, 2015, 3, 5119-5125.	5.2	149
115	Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Applied Catalysis B: Environmental, 2020, 267, 118686.	10.8	149
116	Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3Composite Oxide Semiconductors. Chemistry of Materials, 2005, 17, 3255-3261.	3.2	148
117	Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn ₃ O ₄ . ACS Applied Materials & Interfaces, 2014, 6, 3790-3793.	4.0	148
118	Physicochemical Mechanism for the Continuous Reaction of ?-Al2O3-Modified Aluminum Powder with Water. Journal of the American Ceramic Society, 2007, 90, 1521-1526.	1.9	147
119	Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nature Communications, 2020, 11, 1149.	5.8	147
120	Synergistic Activity of Co and Fe in Amorphous Co <i>x</i> –Fe–B Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 40333-40343.	4.0	145
121	Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2019, 240, 64-71.	10.8	143
122	Toward solar-driven carbon recycling. Joule, 2022, 6, 294-314.	11.7	143
123	Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Applied Catalysis B: Environmental, 2019, 250, 10-16.	10.8	142
124	A Systematical Study on Photocatalytic Properties of AgMO ₂ (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures. Journal of Physical Chemistry C, 2009, 113, 1560-1566.	1.5	141
125	Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+). Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 79-83.	2.0	139
126	Photocatalytic reduction of CO ₂ over Ag/TiO ₂ nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale, 2016, 8, 11870-11874.	2.8	139

#	Article	IF	CITATIONS
127	Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chemistry of Materials, 2005, 17, 5177-5182.	3.2	138
128	Concave trisoctahedral Ag ₃ PO ₄ microcrystals with high-index facets and enhanced photocatalytic properties. Chemical Communications, 2013, 49, 636-638.	2.2	137
129	Photoreduction of CO 2 over the well-crystallized ordered mesoporous TiO 2 with the confined space effect. Nano Energy, 2014, 9, 50-60.	8.2	137
130	In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dualâ€Purpose Strategy for Efficient Molecular Oxygen Activation. Advanced Functional Materials, 2017, 27, 1703923.	7.8	136
131	Polymeric Carbon Nitrides: Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion. Science of Advanced Materials, 2012, 4, 282-291.	0.1	136
132	Preparation of ZnFe ₂ O ₄ nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. Journal of Materials Chemistry A, 2015, 3, 8353-8360.	5.2	135
133	Design of PdAu alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation. Nano Energy, 2016, 26, 398-404.	8.2	133
134	High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. Journal of Materials Chemistry, 2011, 21, 12852.	6.7	131
135	Effective Formation of Oxygen Vacancies in Black TiO ₂ Nanostructures with Efficient Solar-Driven Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 8982-8987.	3.2	131
136	Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nature Communications, 2021, 12, 4652.	5.8	131
137	Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. Journal of Materials Chemistry, 2005, 15, 4246.	6.7	130
138	Slow Photons for Photocatalysis and Photovoltaics. Advanced Materials, 2017, 29, 1605349.	11.1	129
139	Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chemical Science, 2021, 12, 5701-5719.	3.7	129
140	Effect of different modification agents on hydrogen-generation by the reaction of Al with water. International Journal of Hydrogen Energy, 2010, 35, 9561-9568.	3.8	128
141	Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO ₂ Photoreduction. Journal of the American Chemical Society, 2020, 142, 19259-19267.	6.6	128
142	Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 7556-7565.	5.5	126
143	Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Applied Catalysis B: Environmental, 2018, 224, 60-68.	10.8	125
144	A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2013, 134-135, 286-292.	10.8	123

#	Article	IF	CITATIONS
145	Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20. Chemical Physics Letters, 2005, 410, 104-107.	1.2	122
146	Facile Synthesis of Single-Crystalline Ag ₂ V ₄ O ₁₁ Nanotube Material as a Novel Visible-Light-Sensitive Photocatalyst. Journal of Physical Chemistry C, 2011, 115, 145-151.	1.5	122
147	Light assisted CO 2 reduction with methane over group VIII metals: Universality of metal localized surface plasmon resonance in reactant activation. Applied Catalysis B: Environmental, 2017, 209, 183-189.	10.8	122
148	Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Applied Catalysis B: Environmental, 2018, 221, 670-680.	10.8	122
149	SrSnO ₃ Nanostructures:  Synthesis, Characterization, and Photocatalytic Properties. Chemistry of Materials, 2007, 19, 4585-4591.	3.2	121
150	Photocatalytic activities of AgSbO3 under visible light irradiation. Catalysis Today, 2008, 131, 197-202.	2.2	121
151	Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications, 2011, 47, 2041.	2.2	119
152	Photoreduction of Carbon Dioxide Over NaNbO3 Nanostructured Photocatalysts. Catalysis Letters, 2011, 141, 525-530.	1.4	118
153	Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy, 2018, 45, 109-117.	8.2	118
154	Beyond C ₃ N ₄ π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations. Chemical Society Reviews, 2021, 50, 2147-2172.	18.7	118
155	New Series of Solid-Solution Semiconductors (AgNbO ₃) _{1â^'<i>x</i>} (SrTiO ₃) _{<i>x</i>} with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2009. 113. 3785-3792.	1.5	116
156	Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material. Scientific Reports, 2013, 3, 2163.	1.6	116
157	Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx(x = 1,2) architectures. CrystEngComm, 2012, 14, 3163.	1.3	115
158	Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO ₂ to CO. Journal of Materials Chemistry A, 2016, 4, 4776-4782.	5.2	115
159	Band-structure-controlled BiO(ClBr) _{(1â^'x)/2} I _x solid solutions for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 8123-8132.	5.2	114
160	Selective Photo-oxidation of Methane to Methanol with Oxygen over Dual-Cocatalyst-Modified Titanium Dioxide. ACS Catalysis, 2020, 10, 14318-14326.	5.5	114
161	Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Applied Catalysis B: Environmental, 2020, 265, 118581.	10.8	113
162	Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water. Applied Catalysis B: Environmental, 2020, 274, 119096.	10.8	113

#	Article	IF	CITATIONS
163	A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M = Ca, Sr, and Ba) with Special Electronic Structures. Journal of Physical Chemistry B, 2003, 107, 4936-4941.	1.2	111
164	Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties. Journal of Materials Chemistry A, 2013, 1, 2387.	5.2	109
165	Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation. Applied Catalysis A: General, 2008, 334, 51-58.	2.2	107
166	Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy, 2017, 39, 409-417.	8.2	107
167	Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production. Journal of Materials Chemistry A, 2013, 1, 4221.	5.2	106
168	Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. Journal of Materials Chemistry A, 2014, 2, 9875.	5.2	106
169	Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. ACS Applied Materials & Interfaces, 2016, 8, 10367-10374.	4.0	106
170	Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. International Journal of Hydrogen Energy, 2003, 28, 663-669.	3.8	104
171	Correlation between the band positions of (SrTiO3)1â^'x·(LaTiO2N)x solid solutions and photocatalytic properties under visible light irradiation. Physical Chemistry Chemical Physics, 2008, 10, 6717.	1.3	104
172	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Angewandte Chemie - International Edition, 2017, 56, 5570-5574.	7.2	104
173	Photophysical and Photocatalytic Properties of Ca1-xBixVxMo1-xO4Solid Solutions. Journal of Physical Chemistry B, 2006, 110, 11188-11195.	1.2	103
174	Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications. Nanoscale, 2013, 5, 7552.	2.8	102
175	Cation Vacancy-Initiated CO ₂ Photoreduction over ZnS for Efficient Formate Production. ACS Energy Letters, 2019, 4, 1387-1393.	8.8	102
176	Impact of Ligand Modification on Hydrogen Photogeneration and Light-Harvesting Applications Using Cyclometalated Iridium Complexes. Inorganic Chemistry, 2012, 51, 4123-4133.	1.9	101
177	Ag ₃ PO ₄ /In(OH) ₃ Composite Photocatalysts with Adjustable Surface-Electric Property for Efficient Photodegradation of Organic Dyes under Simulated Solar-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 17716-17724.	1.5	101
178	Selective Growth of Metallic Ag Nanocrystals on Ag ₃ PO ₄ Submicro ubes for Photocatalytic Applications. Chemistry - A European Journal, 2012, 18, 14272-14275.	1.7	100
179	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Materials, 2016, 8, e293-e293.	3.8	100
180	Ultrathin FeOOH nanosheets as an efficient cocatalyst for photocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 9222-9229.	5.2	100

#	Article	IF	CITATIONS
181	Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1â^'x(NaNbO3)x solid solutions. Journal of Solid State Chemistry, 2007, 180, 2845-2850.	1.4	98
182	Mesoporous zinc germanium oxynitride for CO2photoreduction under visible light. Chemical Communications, 2012, 48, 1269-1271.	2.2	98
183	Titaniumâ€Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020, 4, 2000486.	4.6	98
184	Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy, 2016, 25, 128-135.	8.2	97
185	An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light. Nano Energy, 2019, 62, 250-258.	8.2	97
186	NaNbO3 Nanostructures: Facile Synthesis, Characterization, and Their Photocatalytic Properties. Catalysis Letters, 2009, 132, 205-212.	1.4	96
187	A Co ₃ O ₄ -embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO ₂ photoreduction. Nanoscale, 2016, 8, 6712-6720.	2.8	96
188	A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light. International Journal of Hydrogen Energy, 2003, 28, 651-655.	3.8	95
189	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. Nano Energy, 2016, 28, 158-163.	8.2	94
190	Superconductivity of Ternary Silicide with theAlB2-Type StructureSr(Ga0.37,Si0.63)2. Physical Review Letters, 2001, 87, 077003.	2.9	93
191	Constructing cubic–orthorhombic surface-phase junctions of NaNbO ₃ towards significant enhancement of CO ₂ photoreduction. Journal of Materials Chemistry A, 2014, 2, 5606-5609.	5.2	93
192	Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. Physical Chemistry Chemical Physics, 2012, 14, 14486.	1.3	92
193	Synthesis and enhanced photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods. Journal of Physics and Chemistry of Solids, 2008, 69, 2487-2491.	1.9	91
194	Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Scientific Reports, 2013, 3, 2720.	1.6	91
195	Conformal BiVO ₄ -Layer/WO ₃ -Nanoplate-Array Heterojunction Photoanode Modified with Cobalt Phosphate Cocatalyst for Significantly Enhanced Photoelectrochemical Performances. ACS Applied Materials & Interfaces, 2019, 11, 5623-5631.	4.0	91
196	Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule, 2021, 5, 3235-3251.	11.7	91
197	Selective-Synthesis of High-Performance Single-Crystalline Sr ₂ Nb ₂ O ₇ Nanoribbon and SrNb ₂ O ₆ Nanorod Photocatalysts. Chemistry of Materials, 2009, 21, 2327-2333.	3.2	90
198	Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO ₃ and their photocatalytic properties. Journal of Materials Chemistry A, 2013, 1, 1185-1191.	5.2	89

#	Article	IF	CITATIONS
199	Siteâ€Selected Doping of Upconversion Luminescent Er ³⁺ into SrTiO ₃ for Visibleâ€Lightâ€Driven Photocatalytic H ₂ or O ₂ Evolution. Chemistry - A European Journal, 2012, 18, 7543-7551.	1.7	87
200	Electronic Structure and Photocatalytic Characterization of a Novel Photocatalyst AgAlO2. Journal of Physical Chemistry B, 2006, 110, 11677-11682.	1.2	86
201	An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. Dalton Transactions, 2013, 42, 2687.	1.6	86
202	Porous-structured Cu ₂ O/TiO ₂ nanojunction material toward efficient CO ₂ photoreduction. Nanotechnology, 2014, 25, 165402.	1.3	86
203	Triggering Water and Methanol Activation for Solar-Driven H ₂ Production: Interplay of Dual Active Sites over Plasmonic ZnCu Alloy. Journal of the American Chemical Society, 2021, 143, 12145-12153.	6.6	85
204	Substitution Effects of In3+by Al3+and Ga3+on the Photocatalytic and Structural Properties of the Bi2InNbO7Photocatalyst. Chemistry of Materials, 2001, 13, 1765-1769.	3.2	84
205	Direct Conversion of Commercial Silver Foils into High Aspect Ratio AgBr Nanowires with Enhanced Photocatalytic Properties. Chemistry - A European Journal, 2010, 16, 10327-10331.	1.7	84
206	General Synthesis of Hybrid TiO ₂ Mesoporous "French Fries―Toward Improved Photocatalytic Conversion of CO ₂ into Hydrocarbon Fuel: A Case of TiO ₂ /ZnO. Chemistry - A European Journal, 2011, 17, 9057-9061.	1.7	84
207	Size-Dependent Mie's Scattering Effect on TiO ₂ Spheres for the Superior Photoactivity of H ₂ Evolution. Journal of Physical Chemistry C, 2012, 116, 3833-3839.	1.5	84
208	Synergetic Exfoliation and Lateral Size Engineering of MoS ₂ for Enhanced Photocatalytic Hydrogen Generation. Small, 2018, 14, e1704153.	5.2	84
209	Microstructure Induced Thermodynamic and Kinetic Modulation to Enhance CO ₂ Photothermal Reduction: A Case of Atomic-Scale Dispersed Co–N Species Anchored Co@C Hybrid. ACS Catalysis, 2020, 10, 4726-4736.	5.5	84
210	Plasmonic Janus omposite Photocatalyst Comprising Au and C–TiO ₂ for Enhanced Aerobic Oxidation over a Broad Visible‣ight Range. Advanced Functional Materials, 2014, 24, 7754-7762.	7.8	83
211	A highly durable p-LaFeO ₃ /n-Fe ₂ O ₃ photocell for effective water splitting under visible light. Chemical Communications, 2015, 51, 3630-3633.	2.2	83
212	Determination of Crystal Structure of Graphitic Carbon Nitride: Ab Initio Evolutionary Search and Experimental Validation. Chemistry of Materials, 2017, 29, 2694-2707.	3.2	83
213	La,Al-Codoped SrTiO ₃ as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catalysis, 2021, 11, 11429-11439.	5.5	83
214	Photophysical and Photocatalytic Properties of MIn0.5Nb0.5O3(M = Ca, Sr, and Ba). Journal of Physical Chemistry B, 2003, 107, 61-65.	1.2	81
215	Highly efficient and stable photocatalytic reduction of CO ₂ to CH ₄ over Ru loaded NaTaO ₃ . Chemical Communications, 2015, 51, 7645-7648.	2.2	81
216	Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO ₂ Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	81

#	Article	IF	CITATIONS
217	Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1â^'Nb O4 (0⩽x⩽1). Chemical Physics Letters, 2001, 343, 303-308.	1.2	80
218	Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Applied Catalysis B: Environmental, 2019, 253, 323-330.	10.8	80
219	Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. Journal of Physics and Chemistry of Solids, 2007, 68, 2317-2320.	1.9	79
220	Designing Carbonized Loofah Sponge Architectures with Plasmonic Cu Nanoparticles Encapsulated in Graphitic Layers for Highly Efficient Solar Vapor Generation. Nano Letters, 2021, 21, 1709-1715.	4.5	79
221	Modification of Al Particle Surfaces by gamma-Al2O3 and Its Effect on the Corrosion Behavior of Al. Journal of the American Ceramic Society, 2005, 88, 977-979.	1.9	78
222	Synergistic effect of Au and Rh on SrTiO ₃ in significantly promoting visible-light-driven syngas production from CO ₂ and H ₂ O. Chemical Communications, 2016, 52, 5989-5992.	2.2	78
223	Solarâ€Driven Water–Gas Shift Reaction over CuO _{<i>x</i>} /Al ₂ O ₃ with 1.1 % of Lightâ€toâ€Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 7708-7712.	7.2	78
224	Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution. Nano Energy, 2022, 95, 107028.	8.2	78
225	A Full Compositional Range for a (Ga _{1-<i>x</i>} Zn <i>_x</i>)(N _{1-<i>x</i>} O <i>_x</i>) Nanostructure: High Efficiency for Overall Water Splitting and Optical Properties. Small, 2015, 11, 871-876.	5.2	77
226	Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2010, 114, 4100-4105.	1.5	76
227	Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. Journal of Materials Chemistry A, 2014, 2, 15553-15559.	5.2	76
228	Optimizing Electron Densities of Niâ€Nâ€C Complexes by Hybrid Coordination for Efficient Electrocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 929-937.	3.6	76
229	Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 65-69.	2.0	75
230	Large impact of strontium substitution on photocatalytic water splitting activity of BaSnO3. Applied Physics Letters, 2007, 91, .	1.5	74
231	Efficient photocatalytic CO 2 reduction in all-inorganic aqueous environment: Cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy, 2017, 34, 524-532.	8.2	74
232	Role of R in Bi2RNbO7(R = Y, Rare Earth):Â Effect on Band Structure and Photocatalytic Properties. Journal of Physical Chemistry B, 2002, 106, 517-520.	1.2	73
233	Mechanism of photocatalytic activities in Cr-doped SrTiO3 under visible-light irradiation: an insight from hybrid density-functional calculations. Physical Chemistry Chemical Physics, 2012, 14, 1876.	1.3	73
234	A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chemical Physics Letters, 2003, 373, 191-196.	1.2	72

#	Article	IF	CITATIONS
235	Photophysical and photocatalytic properties of new photocatalysts MCrO4 (M=Sr, Ba). Chemical Physics Letters, 2003, 378, 24-28.	1.2	72
236	A Comparison Study of Rhodamineâ€B Photodegradation over Nitrogenâ€Doped Lamellar Niobic Acid and Titanic Acid under Visible‣ight Irradiation. Chemistry - A European Journal, 2009, 15, 3538-3545.	1.7	72
237	Co and Fe Codoped WO _{2.72} as Alkalineâ€Solutionâ€Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solarâ€Toâ€Hydrogen Efficiency of 16.9%. Advanced Science, 2019, 6, 1900465.	5.6	72
238	Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation. Materials Research Bulletin, 2001, 36, 1185-1193.	2.7	71
239	Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochemistry Communications, 2011, 13, 275-278.	2.3	71
240	Light assisted CO ₂ reduction with methane over SiO ₂ encapsulated Ni nanocatalysts for boosted activity and stability. Journal of Materials Chemistry A, 2017, 5, 10567-10573.	5.2	71
241	Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Materials, 2018, 13, 49-56.	9.5	71
242	Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts. Journal of Molecular Catalysis A, 2001, 168, 289-297.	4.8	70
243	2-Propanol photodegradation over nitrogen-doped NaNbO3 powders under visible-light irradiation. Journal of Physics and Chemistry of Solids, 2009, 70, 931-935.	1.9	70
244	Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Applied Catalysis B: Environmental, 2018, 226, 252-257.	10.8	70
245	Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. Nano Energy, 2020, 77, 105010.	8.2	70
246	Photoelectrochemical Properties of Nanomultiple CaFe ₂ O ₄ /ZnFe ₂ O ₄ <i>pn</i> Junction Photoelectrodes. Langmuir, 2013, 29, 3116-3124.	1.6	69
247	Engineering the crystallinity of MoS ₂ monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017, 5, 8591-8598.	5.2	69
248	Enhanced photocurrent–voltage characteristics of WO3/Fe2O3 nano-electrodes. Journal Physics D: Applied Physics, 2007, 40, 1091-1096.	1.3	68
249	Band gap tuning of Na1â^'xLaxTa1â^'xCoxO3 solid solutions for visible light photocatalysis. Applied Physics Letters, 2007, 91, .	1.5	67
250	Adsorption and photodegradation properties of anionic dyes by layered double hydroxides. Journal of Physics and Chemistry of Solids, 2011, 72, 1037-1045.	1.9	67
251	Highly efficient hydrogen production from alkaline aldehyde solutions facilitated by palladium nanotubes. Nano Energy, 2014, 8, 103-109.	8.2	67
252	Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. Journal of Energy Chemistry, 2022, 67, 309-341.	7.1	67

#	Article	IF	CITATIONS
253	Fabrication of Black In ₂ O ₃ with Dense Oxygen Vacancy through Dual Functional Carbon Doping for Enhancing Photothermal CO ₂ Hydrogenation. Advanced Functional Materials, 2021, 31, 2100908.	7.8	66
254	W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. Journal of Materials Chemistry A, 2013, 1, 6125.	5.2	65
255	A rapidly room-temperature-synthesized Cd/ZnS:Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction. Applied Catalysis B: Environmental, 2018, 237, 68-73.	10.8	65
256	Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4:  Effects on Photocatalytic Activity. Journal of Physical Chemistry B, 2002, 106, 13098-13101.	1.2	64
257	Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coordination Chemistry Reviews, 2020, 424, 213516.	9.5	64
258	Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+,Ga3+ and In3+). Chemical Physics Letters, 2001, 333, 57-62.	1.2	63
259	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 232, 446-453.	10.8	63
260	Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catalysis Communications, 2019, 123, 69-72.	1.6	63
261	Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3. Dalton Transactions, 2009, , 8519.	1.6	62
262	Facile and Rapid Oxidation Fabrication of BiOCl Hierarchical Nanostructures with Enhanced Photocatalytic Properties. Chemistry - A European Journal, 2013, 19, 9472-9475.	1.7	62
263	Enhancing photocatalytic activity for visible-light-driven H2 generation with the surface reconstructed LaTiO2N nanostructures. Nano Energy, 2015, 12, 775-784.	8.2	62
264	Enhanced Photocatalytic Oxidation of Isopropanol by HKUST-1@TiO ₂ Core–Shell Structure with Ultrathin Anatase Porous Shell: Toxic Intermediate Control. Industrial & Engineering Chemistry Research, 2016, 55, 8096-8103.	1.8	61
265	Machine Learning in Screening High Performance Electrocatalysts for CO ₂ Reduction. Small Methods, 2021, 5, e2100987.	4.6	60
266	Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: towards CO ₂ photo-fixation into CO and CH ₄ . Nanoscale, 2015, 7, 113-120.	2.8	59
267	Three-Dimensional Lupinus-like TiO ₂ Nanorod@Sn ₃ O ₄ Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. ACS Applied Materials & Interfaces, 2017, 9, 38537-38544.	4.0	59
268	Photocatalytic degradation of MB on MIn2O4 (M=alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. Catalysis Today, 2004, 93-95, 885-889.	2.2	58
269	Mesoporous In(OH)3 for photoreduction of CO2 into renewable hydrocarbon fuels. Applied Surface Science, 2013, 280, 418-423.	3.1	58
270	A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chemical Science, 2020, 11, 791-796.	3.7	58

#	Article	IF	CITATIONS
271	Unravelling unsaturated edge S in amorphous NiSx for boosting photocatalytic H2 evolution of metastable phase CdS confined inside hydrophilic beads. Applied Catalysis B: Environmental, 2022, 305, 121055.	10.8	58
272	Growth and anisotropic resistivity ofPrBa2Cu4O8andPr2Ba4Cu7O15â^'ysingle crystals: A direct probe of metallic Cu-O double chains. Physical Review B, 2000, 61, 6327-6333.	1.1	57
273	Enhancement of photoelectric conversion properties of SrTiO3/α-Fe2O3heterojunction photoanode. Journal Physics D: Applied Physics, 2007, 40, 3925-3930.	1.3	57
274	Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction. Chemical Communications, 2010, 46, 1532.	2.2	56
275	Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36, 4716-4723.	3.8	56
276	Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 279, 119387.	10.8	56
277	Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution. Chemical Engineering Journal, 2020, 388, 124346.	6.6	56
278	Electronic coupling assembly of semiconductor nanocrystals: self-narrowed band gap to promise solar energy utilization. Energy and Environmental Science, 2011, 4, 1684.	15.6	55
279	Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. Journal of Materials Chemistry C, 2015, 3, 7538-7542.	2.7	55
280	A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions. Angewandte Chemie - International Edition, 2018, 57, 16781-16784.	7.2	55
281	Ultrathin graphene encapsulated Cu nanoparticles: A highly stable and efficient catalyst for photocatalytic H2 evolution and degradation of isopropanol. Chemical Engineering Journal, 2020, 390, 124558.	6.6	55
282	Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120519.	10.8	55
283	Hierarchical nanowire arrays based on carbon nanotubes and Co ₃ O ₄ decorated ZnO for enhanced photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2015, 3, 13731-13737.	5.2	54
284	Photocatalytic reactivity of {121} and {211} facets of brookite TiO ₂ crystals. Journal of Materials Chemistry A, 2015, 3, 2331-2337.	5.2	54
285	High performance Au–Cu alloy for enhanced visible-light water splitting driven by coinage metals. Chemical Communications, 2016, 52, 4694-4697.	2.2	54
286	Forced Impregnation Approach to Fabrication of Large-Area, Three-Dimensionally Ordered Macroporous Metal Oxides. Chemistry of Materials, 2010, 22, 3583-3585.	3.2	53
287	Remarkable Visible-Light Photocatalytic Activity Enhancement over Au/p-type TiO ₂ Promoted by Efficient Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 24154-24163.	4.0	53
288	Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2. Physical Chemistry Chemical Physics, 2012, 14, 5924.	1.3	51

#	Article	IF	CITATIONS
289	Singleâ€Crystal Nanosheetâ€Based Hierarchical AgSbO ₃ with Exposed {001} Facets: Topotactic Synthesis and Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2012, 18, 3157-3162.	1.7	51
290	Enhanced water oxidation reaction kinetics on a BiVO ₄ photoanode by surface modification with Ni ₄ O ₄ cubane. Journal of Materials Chemistry A, 2019, 7, 278-288.	5.2	51
291	Breaking Platinum Nanoparticles to Singleâ€Atomic Ptâ€C ₄ Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie - International Edition, 2021, 60, 2541-2547.	7.2	51
292	Surface modification and photocatalytic activity of distorted pyrochlore-type Bi2M(M=In, Ga and) Tj ETQq0 0 0 r	gBT /Overl 1.9	ock_{50} 10 Tf 50
293	Photocatalytic properties of a new photocatalyst K2Sr1.5Ta3O10. Chemical Physics Letters, 2007, 435, 96-99.	1.2	50
294	Bifunctional-Nanotemplate Assisted Synthesis of Nanoporous SrTiO ₃ Photocatalysts Toward Efficient Degradation of Organic Pollutant. ACS Applied Materials & Interfaces, 2014, 6, 22726-22732.	4.0	50
295	Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 244, 1013-1020.	10.8	50
296	Selective Preparation of 1T- and 2H-Phase MoS ₂ Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. ACS Applied Energy Materials, 2020, 3, 998-1009.	2.5	50
297	Band structure design and photocatalytic activity of In2O3/N–InNbO4 composite. Applied Physics Letters, 2009, 95, .	1.5	49
298	Growth of Shape―and Size‧elective Zinc Oxide Nanorods by a Microwaveâ€Assisted Chemical Bath Deposition Method: Effect on Photocatalysis Properties. Chemistry - A European Journal, 2010, 16, 10569-10575.	1.7	49
299	An Ag ₃ PO ₄ /nitridized Sr ₂ Nb ₂ O ₇ composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation. Nanoscale, 2014, 6, 7303-7311.	2.8	49
300	Ultrathin Cobalt–Manganese Nanosheets: An Efficient Platform for Enhanced Photoelectrochemical Water Oxidation with Electronâ€Donating Effect. Advanced Functional Materials, 2019, 29, 1904622.	7.8	49
301	Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 286, 119924.	10.8	49
302	Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120440.	10.8	49
303	Discerning the mechanism of expedited interfacial electron transformation boosting photocatalytic hydrogen evolution by metallic 1T-WS2-induced photothermal effect. Applied Catalysis B: Environmental, 2022, 310, 121295.	10.8	49
304	Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation. Dalton Transactions, 2009, , 2423.	1.6	48
305	Improved Photocatalytic H ₂ Evolution over G arbon Nitride with Enhanced Inâ€Plane Ordering. Small, 2016, 12, 6160-6166.	5.2	48
306	Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	48

#	Article	IF	CITATIONS
307	Recent advances in tuning the electronic structures of atomically dispersed M–N–C materials for efficient gas-involving electrocatalysis. Materials Horizons, 2020, 7, 970-986.	6.4	48
308	Degradation in photocatalytic activity induced by hydrogen-related defects in nano-LiNbO3 material. Applied Physics Letters, 2006, 88, 071917.	1.5	47
309	BiAg Alloy Nanospheres: A New Photocatalyst for H ₂ Evolution from Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 19488-19493.	4.0	47

Inhomogeneous RVO₄ Photocatalyst Systems (R = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,) Tj ETQq0 0.0 rgBT /Qyerlock 10 $\frac{10}{47}$

311	Efficient organic degradation under visible light by α-Bi2O3 with a CuO -assistant electron transfer process. Applied Catalysis B: Environmental, 2015, 163, 267-276.	10.8	47
312	Semiconductorâ€Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. Chemistry - an Asian Journal, 2018, 13, 127-142.	1.7	47
313	Nitrogen-doped ultrathin graphene encapsulated Cu nanoparticles decorated on SrTiO3 as an efficient water oxidation photocatalyst with activity comparable to BiVO4 under visible-light irradiation. Applied Catalysis B: Environmental, 2020, 279, 119352.	10.8	47
314	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	3.1	47
315	Unusually largeTcenhancement in superconductingPrBa2Cu3Oxunder pressure. Physical Review B, 1998, 58, R619-R622.	1.1	46
316	Enhanced photocatalytic activity of Ag/Ag3PO4 coaxial hetero-nanowires. Journal of Materials Chemistry A, 2013, 1, 10612.	5.2	46
317	A p-type Cr-doped TiO2 photo-electrode for photo-reduction. Chemical Communications, 2013, 49, 3440.	2.2	46
318	Fabricating a Au@TiO ₂ Plasmonic System To Elucidate Alkali-Induced Enhancement of Photocatalytic H ₂ Evolution: Surface Potential Shift or Methanol Oxidation Acceleration?. ACS Catalysis, 2018, 8, 4266-4277.	5.5	46
319	Hierarchically Assembling CoFe Prussian Blue Analogue Nanocubes on CoP Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting. Small Methods, 2021, 5, e2100125.	4.6	46
320	Hydrothermal Synthesis and Structures of Na3In2(PO4)3and Na3In2(AsO4)3: Synthetic Modifications of the Mineral Alluaudite. Journal of Solid State Chemistry, 1997, 131, 131-137.	1.4	45
321	Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment. CrystEngComm, 2012, 14, 3063.	1.3	45
322	In situ construction of α-Bi ₂ O ₃ /g-C ₃ N ₄ /β-Bi ₂ O ₃ compos and their highly efficient photocatalytic performances. RSC Advances, 2015, 5, 92963-92969.	sit es 7	45
323	Bonding and Electron Energy-Level Alignment at Metal/TiO ₂ Interfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 5549-5556.	1.5	45
324	Synthesis of bismuth molybdate photocatalysts for CO2 photo-reduction. Journal of CO2 Utilization, 2019, 29, 196-204.	3.3	45

#	Article	IF	CITATIONS
325	Stabilizing Atomically Dispersed Catalytic Sites on Tellurium Nanosheets with Strong Metal–Support Interaction Boosts Photocatalysis. Small, 2020, 16, e2002356.	5.2	45
326	Systematic study of the growth-temperature dependence of structural disorder and superconductivity inYBa2Cu3O7â´î thin films. Physical Review B, 1994, 50, 7099-7106.	1.1	44
327	Visible light photoactivity from a bonding assembly of titanium oxide nanocrystals. Chemical Communications, 2011, 47, 4219.	2.2	44
328	Selective Deposition of Ag ₃ PO ₄ on Specific Facet of BiVO ₄ Nanoplate for Enhanced Photoelectrochemical Performance. Solar Rrl, 2018, 2, 1800102.	3.1	44
329	Targeted Exfoliation and Reassembly of Polymeric Carbon Nitride for Efficient Photocatalysis. Advanced Functional Materials, 2019, 29, 1901024.	7.8	44
330	Polymeric carbon nitride with frustrated Lewis pair sites for enhanced photofixation of nitrogen. Journal of Materials Chemistry A, 2020, 8, 13292-13298.	5.2	44
331	Precisely Tailoring Nitrogen Defects in Carbon Nitride for Efficient Photocatalytic Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 3970-3979.	4.0	44
332	Optical and structural properties of the BiTa1â^'xNbxO4 (0≦x≦1) compounds. Solid State Communicatior 2001, 119, 471-475.	^{1S,} 0.9	43
333	Hydrothermal Synthesis of Na _{0.5} La _{0.5} TiO ₃ –LaCrO ₃ Solidâ€Solution Singleâ€Crystal Nanocubes for Visibleâ€Lightâ€Driven Photocatalytic H ₂ Evolution. Chemistry - A European Journal, 2011, 17, 7858-7867.	1.7	43
334	A novel Cl- modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. Nano Energy, 2021, 81, 105651.	8.2	43
335	Photocatalytic decomposition of water with Bi2InNbO7. Catalysis Letters, 2000, 68, 235-239.	1.4	42
336	Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO ₃ to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity. ACS Applied Materials & Interfaces, 2016, 8, 9506-9513.	4.0	42
337	Ultrathin FeP Nanosheets as an Efficient Catalyst for Electrocatalytic Water Oxidation: Promoted Intermediates Adsorption by Surface Defects. ACS Applied Energy Materials, 2020, 3, 3577-3585.	2.5	42
338	Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %. Applied Catalysis B: Environmental, 2020, 272, 118965.	10.8	42
339	Boron Dopant Induced Electronâ€Rich Bismuth for Electrochemical CO ₂ Reduction with High Solar Energy Conversion Efficiency. Small, 2021, 17, e2101128.	5.2	42
340	Electric field-directed growth and photoelectrochemical properties of cross-linked Au–ZnO hetero-nanowire arrays. Chemical Communications, 2015, 51, 2103-2106.	2.2	41
341	The crystalline/amorphous contact in Cu ₂ O/Ta ₂ O ₅ heterostructures: increasing its sunlight-driven overall water splitting efficiency. Journal of Materials Chemistry A, 2017, 5, 2732-2738.	5.2	41
342	Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. Applied Catalysis B: Environmental, 2021, 288, 119976.	10.8	41

ARTICLE IF CITATIONS Visible light sensitive photocatalysts In1â[^]xMxTaO4 (M=3d transition-metal) and their activity 343 controlling factors. Journal of Physics and Chemistry of Solids, 2005, 66, 266-273. 2-Propanol photodegradation over lead niobates under visible light irradiation. Applied Catalysis A: 344 2.2 40 General, 2007, 326, 1-7. Hydrogen Production and Characterization of MLaSrNb₂NiO₉ (<i>M</i> = Na,) Tj ETQq1,1,0.784314 rgBT Simple Room-Temperature Mineralization Method to SrWO₄ Micro/Nanostructures and 346 1.5 40 Their Photocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 15778-15784. Stateâ€ofâ€theâ€Art Progress in Diverse Black Phosphorusâ€Based Structures: Basic Properties, Synthesis, Stability, Photo†and Electrocatalysisâ€Driven Energy Conversion. Advanced Functional Materials, 2021, 347 31, 2005197. Photophysical and Photocatalytic Activities of a Novel Photocatalyst BaZn1/3Nb2/3O3. Journal of 348 1.2 39 Physical Chemistry B, 2004, 108, 12790-12794. Temperature Effect on Hydrogen Generation by the Reaction of gamma-Al2O3-Modified Al Powder with 349 1.9 39 Distilled Water. Journal of the American Ceramic Society, 2005, 88, 2975-2977. Strong adsorption and effective photocatalytic activities of one-dimensional nano-structured silver 350 2.2 39 titanates. Applied Catalysis A: General, 2010, 375, 85-91. Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries. ACS 4.0 39 Applied Materials & amp; Interfaces, 2015, 7, 20184-20189. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared 352 1.6 39 Solar Photocatalysis. Scientific Reports, 2016, 6, 20001. Synthesis of graphene/tourmaline/TiO 2 composites with enhanced activity for photocatalytic 6.9 39 dégradation of 2-propanol. Chinese Journal of Catalysis, 2017, 38, 1307-1314. Constructing and controlling of highly dispersed metallic sites for catalysis. Nano Today, 2018, 19, 354 6.2 39 108-125. Stabilizing CuGaS₂ by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO₂ reduction under visible light. Nanoscale, 2020, 12, 2.8 39 8693-8700. Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties. Journal of 356 1.9 38 Physics and Chemistry of Solids, 2007, 68, 280-283. BaCeO3 as a novel photocatalyst with 4f electronic configuration for water splitting. Solid State 1.3 38 lonics, 2008, 178, 1711-1713. Fabrication of Fe₂TiO₅/TiO₂ nanoheterostructures with 358 1.7 38 enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 45343-45348. Growth of Single Crystals in the Systems withR–Rh–B andR–Rh–B–C (R=Rare Earth Element) from 1.4 Molten Copper Flux. Journal of Solid State Chemistry, 1997, 133, 82-87. Preparation, structural and optical properties of a new class of compounds, Bi2MNbO7 (M=Al, Ga, In). 360 1.7 37 Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 83-85.

JINHUA YE

#	Article	IF	CITATIONS
361	Possible Role of Lattice Dynamics in the Photocatalytic Activity of BaM1/3N2/3O3(M = Ni, Zn; N = Nb, Ta). Journal of Physical Chemistry B, 2004, 108, 8888-8893.	1.2	37
362	Selective local nitrogen doping in a TiO2 electrode for enhancing photoelectrochemical water splitting. Chemical Communications, 2012, 48, 8649.	2.2	37
363	Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H ₂ O ₂ production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chemical Communications, 2019, 55, 13279-13282.	2.2	37
364	Copper nanoparticles selectively encapsulated in an ultrathin carbon cage loaded on SrTiO ₃ as stable photocatalysts for visible-light H ₂ evolution <i>via</i> water splitting. Chemical Communications, 2019, 55, 12900-12903.	2.2	37
365	A new type of hybrid nanostructure: complete photo-generated carrier separation and ultrahigh photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 14245-14250.	5.2	36
366	Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Applied Catalysis B: Environmental, 2019, 259, 118026.	10.8	36
367	Photocatalytic Properties of TiO[sub 2] Nanostructures Fabricated by Means of Glancing Angle Deposition and Anodization. Journal of the Electrochemical Society, 2009, 156, K160.	1.3	35
368	Fabrication of Ag3PO4–PAN composite nanofibers for photocatalytic applications. CrystEngComm, 2013, 15, 4802.	1.3	35
369	Atomic carbon chains-mediated carriers transfer over polymeric carbon nitride for efficient photocatalysis. Applied Catalysis B: Environmental, 2019, 259, 118027.	10.8	35
370	A surface-alkalinized Ti ₃ C ₂ MXene as an efficient cocatalyst for enhanced photocatalytic CO ₂ reduction over ZnO. Catalysis Science and Technology, 2021, 11, 4953-4961.	2.1	35
371	A universal strategy boosting photoelectrochemical water oxidation by utilizing MXene nanosheets as hole transfer mediators. Applied Catalysis B: Environmental, 2021, 297, 120268.	10.8	35
372	Enhanced photoelectrolysis of water with photoanode Nb:SrTiO3. Applied Physics Letters, 2004, 85, 689-691.	1.5	34
373	Nanoarchitectonics of a Au nanoprism array on WO ₃ film for synergistic optoelectronic response. Science and Technology of Advanced Materials, 2011, 12, 044604.	2.8	34
374	Single Cobalt Atom Anchored Black Phosphorous Nanosheets as an Effective Cocatalyst Promotes Photocatalysis. ChemCatChem, 2020, 12, 3870-3879.	1.8	34
375	Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production. Chemical Engineering Journal, 2021, 406, 126838.	6.6	34
376	Visible-light photodecomposition of acetaldehyde by TiO ₂ -coated gold nanocages: plasmon-mediated hot electron transport via defect states. Chemical Communications, 2014, 50, 15553-15556.	2.2	33
377	Superfine Ag nanoparticle decorated Zn nanoplates for the active and selective electrocatalytic reduction of CO ₂ to CO. Chemical Communications, 2016, 52, 14105-14108.	2.2	33
378	Three-dimensional Bi2MoO6/TiO2 array heterojunction photoanode modified with cobalt phosphate cocatalyst for high-efficient photoelectrochemical water oxidation. Catalysis Today, 2019, 335, 262-268.	2.2	33

#	Article	IF	CITATIONS
379	Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. Chemical Engineering Journal, 2020, 399, 125794.	6.6	33
380	Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation. Applied Catalysis A: General, 2009, 366, 309-314.	2.2	32
381	WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation. Chemical Communications, 2010, 46, 5352.	2.2	32
382	Synchronizing concurrent model updates based on bidirectional transformation. Software and Systems Modeling, 2013, 12, 89-104.	2.2	32
383	Facile synthesis of hollow Ag@AgBr heterostructures with highly efficient visible-light photocatalytic properties. CrystEngComm, 2014, 16, 8317.	1.3	32
384	Design of a photoelectrochemical device for the selective conversion of aqueous CO2to CO: using mesoporous palladium–copper bimetallic cathode and hierarchical ZnO-based nanowire array photoanode. Chemical Communications, 2016, 52, 8235-8238.	2.2	32
385	Integrated analysis of microfibrillar-associated proteins reveals <i>MFAP4</i> as a novel biomarker in human cancers. Epigenomics, 2019, 11, 5-21.	1.0	32
386	Photooxidation of Polycyclic Aromatic Hydrocarbons over NaBiO3 under Visible Light Irradiation. Catalysis Letters, 2008, 122, 131-137.	1.4	31
387	Role of phosphorus in synthesis of phosphated mesoporous TiO2 photocatalytic materials by EISA method. Applied Surface Science, 2008, 254, 5191-5198.	3.1	31
388	Preparation and photophysical properties of some oxides in Ca–Bi–O system. Journal of Alloys and Compounds, 2008, 455, 346-352.	2.8	31
389	Synthesis of hierarchical Ag2ZnGeO4 hollow spheres for enhanced photocatalytic property. Chemical Communications, 2012, 48, 9894.	2.2	31
390	A disparate role of RP11-424C20.2/UHRF1 axis through control of tumor immune escape in liver hepatocellular carcinoma and thymoma. Aging, 2019, 11, 6422-6439.	1.4	31
391	Preparation, structural and photophysical properties of Bi2InNbO7 compound. Journal of Materials Science Letters, 2000, 19, 1909-1911.	0.5	30
392	The electronic structures of the thin films of InVO4 and TiO2 by first principles calculations. Thin Solid Films, 2003, 445, 168-174.	0.8	30
393	Preparation, characterization and photocatalytic activity of polycrystalline Bi2O3/SrTiO3 composite powders. Journal of Physics and Chemistry of Solids, 2006, 67, 2501-2505.	1.9	30
394	One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution. Journal of Colloid and Interface Science, 2009, 331, 132-137.	5.0	30
395	Photoanodic properties of pulsed-laser-deposited α-Fe ₂ O ₃ electrode. Journal Physics D: Applied Physics, 2010, 43, 325101.	1.3	30
396	Undoped visible-light-sensitive titania photocatalyst. Journal of Materials Science, 2013, 48, 108-114.	1.7	30

#	Article	IF	CITATIONS
397	A new type of p-type NiO/n-type ZnO nano-heterojunctions with enhanced photocatalytic activity. RSC Advances, 2014, 4, 34649.	1.7	30
398	Self-templated construction of 1D NiMo nanowires <i>via</i> a Li electrochemical tuning method for the hydrogen evolution reaction. Nanoscale, 2019, 11, 19429-19436.	2.8	30
399	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 2019, 7, 13629-13634.	5.2	30
400	Fabrication of Fe3O4@graphene/TiO2 nanohybrid with enhanced photocatalytic activity for isopropanol degradation. Journal of Alloys and Compounds, 2019, 792, 918-927.	2.8	30
401	Efficient photocatalytic conversion of CH ₄ into ethanol with O ₂ over nitrogen vacancy-rich carbon nitride at room temperature. Chemical Communications, 2021, 57, 871-874.	2.2	30
402	Synthesis and characterization of the nonstoichiometric perovskite-type compound ScRh3Bx. Journal of Alloys and Compounds, 2000, 309, 107-112.	2.8	29
403	Substitution Effect of Ta5+ by Nb5+ on Photocatalytic, Photophysical, and Structural Properties of BiTa1–xNbxO4(0 ≦ x≦ 1.0). Journal of Materials Research, 2002, 17, 1446-1454.	1.2	29
404	Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution. Catalysis Today, 2019, 335, 166-172.	2.2	29
405	Light irradiation enhanced CO2 reduction with methane: A case study in size-dependent optical property of Ni nanoparticles. Catalysis Today, 2019, 335, 187-192.	2.2	29
406	Insights into the Operation of Nobleâ€Metalâ€Free Cocatalyst 1Tâ€WS ₂ â€Decorated Zn _{0.5} Cd _{0.5} S for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2021, 14, 4752-4763.	3.6	29
407	Mixed Metal Sulfides for the Application of Photocatalytic Energy Conversion. Energy & Fuels, 2022, 36, 11308-11322.	2.5	29
408	Title is missing!. Catalysis Letters, 2001, 75, 209-213.	1.4	28
409	Photocatalytic H2 evolution over a new visible-light-driven photocatalyst In12NiCr2Ti10O42. Chemical Physics Letters, 2005, 411, 285-290.	1.2	28
410	Photothermal catalysts for hydrogenation reactions. Chemical Communications, 2021, 57, 1279-1294.	2.2	28
411	Novel visible-light sensitive vanadate photocatalysts for water oxidation: implications from density functional theory calculations. Journal of Materials Chemistry A, 2015, 3, 10720-10723.	5.2	27
412	Series of ZnSn(OH) ₆ Polyhedra: Enhanced CO ₂ Dissociation Activation and Crystal Facet-Based Homojunction Boosting Solar Fuel Synthesis. Inorganic Chemistry, 2017, 56, 5704-5709.	1.9	27
413	Unique homo–heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn–Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO ₂ into solar fuels. Chemical Communications, 2018, 54, 5126-5129.	2.2	27
414	Kopplung von Solarenergie und WĤmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angewandte Chemie, 2020, 132, 8092-8111.	1.6	27

#	Article	IF	CITATIONS
415	Electrocatalytic reduction of N ₂ and nitrogen-incorporation process on dopant-free defect graphene. Journal of Materials Chemistry A, 2020, 8, 55-61.	5.2	27
416	Enhanced Photocatalytic CO2 Reduction over TiO2 Using Metalloporphyrin as the Cocatalyst. Catalysts, 2020, 10, 654.	1.6	27
417	Solar light-induced injection of hot electrons and photocarriers for synergistically enhanced photothermocatalysis over Cu-Co/SrTiO3 catalyst towards boosting CO hydrogenation into C2–C4 hydrocarbons. Applied Catalysis B: Environmental, 2022, 310, 121063.	10.8	27
418	Crystal growth of superconductive PrBa2Cu3O7â^'y. Physica C: Superconductivity and Its Applications, 1998, 300, 200-206.	0.6	26
419	Photocatalytic properties of a novel layered photocatalyst CsLaSrNb2NiO9. Catalysis Letters, 2006, 110, 139-142.	1.4	26
420	Photocatalytic hydrogen evolution over SiO2-pillared and nitrogen-doped titanic acid under visible light irradiation. Applied Catalysis A: General, 2010, 390, 195-200.	2.2	26
421	Alkali Treatment for Enhanced Photoelectrochemical Water Oxidation on Hematite Photoanode. ACS Sustainable Chemistry and Engineering, 2019, 7, 5420-5429.	3.2	26
422	Comprehensive analysis of Helicobacter pylori infection-associated diseases based on miRNA-mRNA interaction network. Briefings in Bioinformatics, 2019, 20, 1492-1501.	3.2	26
423	Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. Applied Catalysis B: Environmental, 2021, 298, 120551.	10.8	26
424	A new efficient visible-light-driven photocatalyst Na0.5Bi1.5VMoO8 for oxygen evolution. Chemical Physics Letters, 2008, 450, 370-374.	1.2	25
425	Enhancement of Visible-Light Photocatalytic Activity of Ag0.7Na0.3NbO3 Modified by a Platinum Complex. Journal of Physical Chemistry C, 2008, 112, 20329-20333.	1.5	25
426	Photocatalytic Degradation of Isopropanol Over PbSnO3Nanostructures Under Visible Light Irradiation. Nanoscale Research Letters, 2009, 4, 274-280.	3.1	25
427	Role of Particle Sizes in Hydrogen Generation by the Reaction of Al with Water. Journal of the American Ceramic Society, 2010, 93, 2998-3001.	1.9	25
428	PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity. Journal of Materials Chemistry, 2010, 20, 10187.	6.7	25
429	Photochemical Conversion and Storage of Solar Energy. ACS Energy Letters, 2019, 4, 405-410.	8.8	25
430	Engineering interfacial charge transfer channel for efficient photocatalytic H2 evolution: The interplay of CoPx and Ca2+ dopant. Applied Catalysis B: Environmental, 2022, 303, 120887.	10.8	25
431	Solid solution range of boron, microhardness and oxidation resistance of the perovskite type RERh3Bx (RE=Gd, Y, Sc) compounds. Journal of Alloys and Compounds, 1999, 291, 52-56.	2.8	24
432	Synthesis and photophysical properties of barium indium oxides. Journal of Materials Research, 2002, 17, 2201-2204.	1.2	24

#	Article	IF	CITATIONS
433	A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation. Chemical Physics Letters, 2004, 384, 139-143.	1.2	24
434	Polymeric micelle assembly for the direct synthesis of functionalized mesoporous silica with fully accessible Pt nanoparticles toward an improved CO oxidation reaction. Chemical Communications, 2014, 50, 9101-9104.	2.2	24
435	Direct metal laser sintering synthesis of carbon nanotube reinforced Ti matrix composites: Densification, distribution characteristics and properties. Journal of Materials Research, 2016, 31, 281-291.	1.2	24
436	Two-dimensional titanium oxide nanosheets rich in titanium vacancies as an efficient cocatalyst for photocatalytic water oxidation. Journal of Catalysis, 2018, 367, 296-305.	3.1	24
437	Marimo-Bead-Supported Core–Shell Nanocomposites of Titanium Nitride and Chromium-Doped Titanium Dioxide as a Highly Efficient Water-Floatable Green Photocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 31327-31339.	4.0	24
438	Targeted removal of interfacial adventitious carbon towards directional charge delivery to isolated metal sites for efficient photocatalytic H2 production. Nano Energy, 2020, 76, 105077.	8.2	24
439	Metal-Reduced WO _{3–<i>x</i>} Electrodes with Tunable Plasmonic Resonance for Enhanced Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2020, 3, 3569-3576.	2.5	24
440	Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt. ChemCatChem, 2020, 12, 3838-3842.	1.8	24
441	Preparation and Some Electrical Properties of Yttrium-Doped Antimonic Acids. Chemistry of Materials, 2003, 15, 928-934.	3.2	23
442	A novel series of photocatalysts M2.5VMoO8 (M = Mg, Zn) for O2 evolution under visible light irradiation. Catalysis Today, 2004, 93-95, 891-894.	2.2	23
443	Photophysical and Photocatalytic Properties of Three Isostructural Oxide Semiconductors In6NiTi6O22, In3CrTi2O10, and In12NiCr2Ti10O42with Different 3d Transition Metals. Journal of Physical Chemistry C, 2007, 111, 12848-12854.	1.5	23
444	Combination of photocatalytic and antibacterial effects of silver oxide loaded on titania nanotubes. Materials Letters, 2011, 65, 236-239.	1.3	23
445	Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb 1â^'x Ta x) 2 O 6 solid solutions. Applied Catalysis B: Environmental, 2015, 168-169, 243-249.	10.8	23
446	Enhanced Visible-Light-Driven Hydrogen Production of Carbon Nitride by Band Structure Tuning. Journal of Physical Chemistry C, 2018, 122, 17261-17267.	1.5	23
447	Efficient photocatalytic CO ₂ reduction mediated by transitional metal borides: metal site-dependent activity and selectivity. Journal of Materials Chemistry A, 2020, 8, 21833-21841.	5.2	23
448	Constructing Chemical Interaction between Hematite and Carbon Nanosheets with Single Active Sites for Efficient Photoâ€Electrochemical Water Oxidation. Small Methods, 2020, 4, 2000577.	4.6	23
449	Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Research, 2022, 15, 4100-4107.	5.8	23
450	Synthesis of monodisperse Zn-smectite. Applied Clay Science, 2010, 48, 55-59.	2.6	22

#	Article	IF	CITATIONS
451	Nanorod-like α-Bi ₂ O ₃ : a highly active photocatalyst synthesized using g-C ₃ N ₄ as a template. RSC Advances, 2014, 4, 55062-55066.	1.7	22
452	In Situ Assembly of MoS <i>_x</i> Thinâ€Film through Selfâ€Reduction on p‣i for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2007071.	7.8	22
453	Water adsorption onto Y and V sites at the surface of the YVO4 photocatalyst and related electronic properties. Journal of Chemical Physics, 2009, 131, 034701.	1.2	21
454	Water molecule adsorption properties on surfaces of MVO4 (M = In, Y, Bi) photo-catalysts. Journal of Electroceramics, 2009, 22, 114-119.	0.8	21
455	Synergistic effect of different phase on the photocatalytic activity of visible light sensitive silver antimonates. Journal of Molecular Catalysis A, 2010, 320, 79-84.	4.8	21
456	From β-Phase Particle to α-Phase Hexagonal-Platelet Superstructure over AgGaO2: Phase Transformation, Formation Mechanism of Morphology, and Photocatalytic Properties. Crystal Growth and Design, 2010, 10, 2921-2927.	1.4	21
457	Role of photoexcited electrons in hydrogen evolution from platinum co-catalysts loaded on anatase TiO2: a first-principles study. Journal of Materials Chemistry A, 2013, 1, 6664.	5.2	21
458	Comparative study of photoinduced wettability conversion between [PW12O40]3â^'/brookite and [SiW12O40]4â^'/brookite hybrid films. Materials Chemistry and Physics, 2014, 144, 327-334.	2.0	21
459	Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu ₂ ZnSnS ₄ photocathode. Chemical Communications, 2015, 51, 14057-14059.	2.2	21
460	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 2195-2203.	5.2	21
461	Selective Photothermal Reduction of CO ₂ to CO over Ni-Nanoparticle/N-Doped CeO ₂ Nanocomposite Catalysts. ACS Applied Nano Materials, 2021, 4, 10485-10494.	2.4	21
462	Oxygen potential control in YBa2Cu3O7â^'δ thin films. Physica C: Superconductivity and Its Applications, 1993, 213, 1-13.	0.6	20
463	Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation. Research on Chemical Intermediates, 2005, 31, 359-364.	1.3	20
464	Kinetics of MB degradation and effect of pH on the photocatalytic activity of MIn2O4 (M = Ca, Sr, Ba) under visible light irradiation. Research on Chemical Intermediates, 2005, 31, 513-519.	1.3	20
465	Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method. APL Materials, 2015, 3, .	2.2	20
466	Photo-thermal CO2 reduction with methane on group VIII metals: In situ reduced WO3 support for enhanced catalytic activity. Chinese Journal of Catalysis, 2021, 42, 1976-1982.	6.9	20
467	Hydrated electrons mediated in-situ construction of cubic phase CdS/Cd thin layer on a millimeter-scale support for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 769-781.	5.0	20
468	Preparation of Ag-I Intercalated Bi2Sr2CaCu2OySuperconductor. Japanese Journal of Applied Physics, 1993, 32, L894-L897.	0.8	19

#	Article	IF	CITATIONS
469	Photocatalytic Decomposition of Acetaldehyde over Rubidium Bismuth Niobates under Visible Light Irradiation. Materials Transactions, 2005, 46, 2694-2698.	0.4	19
470	Fabrication of Zn _{<i>x</i>} Cd _{1–<i>x</i>} Se Nanocrystal-Sensitized TiO ₂ Nanotube Arrays and Their Photoelectrochemical Properties. Journal of Physical Chemistry C, 2012, 116, 16885-16892.	1.5	19
471	Photogenerated Charge Carriers Dynamics on La- and/or Cr-Doped SrTiO ₃ Nanoparticles Studied by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 1292-1302.	1.5	19
472	Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction. Transactions of Tianjin University, 2020, 26, 470-478.	3.3	19
473	Tridecaboron diphosphide: a new infrared light active photocatalyst for efficient CO ₂ photoreduction under mild reaction conditions. Journal of Materials Chemistry A, 2021, 9, 2421-2428.	5.2	19
474	Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO ₂ Conversion. Angewandte Chemie, 2022, 134, .	1.6	19
475	Photoinduced Amphiphilic Property of InNbO4Thin Film. Langmuir, 2007, 23, 1924-1927.	1.6	18
476	Building Niobate Nanoparticles with Hexaniobate Lindqvist Ions. European Journal of Inorganic Chemistry, 2010, 2010, 1473-1480.	1.0	18
477	Enhancement of photocatalytic activity for WO3 by simple NaOH loading. Applied Catalysis A: General, 2014, 488, 183-188.	2.2	18
478	Titania nanotubes and fullerenes C60 assemblies and their photocatalytic activity under visible light. Ceramics International, 2014, 40, 1297-1302.	2.3	18
479	Engineering Heterogeneous NiS ₂ /NiS Cocatalysts with Progressive Electron Transfer from Planar <i>p</i> â€Si Photocathodes for Solar Hydrogen Evolution. Small Methods, 2021, 5, e2001018.	4.6	18
480	Understanding targeted modulation mechanism in SrTiO3 using K+ for solar water splitting. Applied Catalysis B: Environmental, 2022, 316, 121613.	10.8	18
481	Optical and structural properties of solid oxide photocatalyst Bi ₂ FeNbO ₇ . Journal of Materials Research, 2001, 16, 35-37.	1.2	17
482	Title is missing!. Topics in Catalysis, 2003, 22, 107-110.	1.3	17
483	Photochromism and visible light induced H2 generation in Sr2TiO4:Cr complexes. Applied Physics Letters, 2010, 96, 114103.	1.5	17
484	Room-temperature driven and visible light enhanced dehydrogenation reactions catalysed by basic Au/SrTiO ₃ . Journal of Materials Chemistry A, 2016, 4, 1941-1946.	5.2	17
485	Ultrahigh efficient water oxidation under visible light: Using Fe dopants to integrate nanostructure and cocatalyst in LaTiO2N system. Nano Energy, 2016, 19, 437-445.	8.2	17
486	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Angewandte Chemie, 2017, 129, 5662-5666.	1.6	17

#	Article	IF	CITATIONS
487	Solarâ€Driven Water–Gas Shift Reaction over CuO x /Al 2 O 3 with 1.1 % of Lightâ€toâ€Energy Storage. Angewandte Chemie, 2019, 131, 7790-7794.	1.6	17
488	Integrated analysis of pseudogene <i>RP11-564D11.3</i> expression and its potential roles in hepatocellular carcinoma. Epigenomics, 2019, 11, 267-280.	1.0	17
489	Molecular-level understanding of the deactivation pathways during methanol photo-reforming on Pt-decorated TiO2. Applied Catalysis B: Environmental, 2020, 272, 118980.	10.8	17
490	Evidence from high-pressure experiments that PrBa2Cu3Ox is a normal YBa2Cu3Ox-like oxide superconductor. Physica C: Superconductivity and Its Applications, 1999, 328, 111-117.	0.6	16
491	Boron nonstoichiometry, hardness and oxidation resistance of perovskite-type CeRh3Bx (x=0–1). Journal of Alloys and Compounds, 2006, 426, 304-307.	2.8	16
492	Photocatalytic properties of CaBiVMO8 (where M=W and Mo) compounds. Catalysis Today, 2006, 116, 18-21.	2.2	16
493	Synergistic effect between TiO ₂ and ubiquitous metal oxides on photocatalytic activity of composite nanostructures. Journal of the Ceramic Society of Japan, 2014, 122, 393-397.	0.5	16
494	Exceptional enhancement of H2 production in alkaline environment over plasmonic Au/TiO2 photocatalyst under visible light. APL Materials, 2015, 3, .	2.2	16
495	Costâ€Efficient Photovoltaicâ€Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron–Molybdenum Oxides for Potential Largeâ€Scale Hydrogen Production. Small, 2021, 17, e2102222.	5.2	16
496	Revealing the illumination effect on the discharge products in highâ€performance Li–O ₂ batteries with heterostructured photocatalysts. , 2022, 4, 1169-1181.		16
497	Growth and Superconductivity of a New Ternary Intermetallic Compound, Ta5Ga2Sn. Japanese Journal of Applied Physics, 1989, 28, 1519-1520.	0.8	15
498	Effect of Ni Substitution on the Structure and Photocatalytic Activity of InTaO ₄ Under Visible Light Irradiation. Journal of Materials Research, 2002, 17, 1419-1424.	1.2	15
499	Synthesis of zinc oxide fibers from precursor bis(acetylacetonato)zinc. Journal of Alloys and Compounds, 2007, 439, 227-231.	2.8	15
500	Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles. Journal of Materials Research, 2010, 25, 141-148.	1.2	15
501	Direct synthesis of a mesoporous TiO ₂ –RuO ₂ composite through evaporation-induced polymeric micelle assembly. Physical Chemistry Chemical Physics, 2014, 16, 10425-10428.	1.3	15
502	Constructing a multicomponent junction for improved visible-light photocatalytic performance induced by Au nanoparticles. Chemical Communications, 2015, 51, 2173-2176.	2.2	15
503	Wafer-scale Si nanoconed arrays induced syngas in the photoelectrochemical CO2 reduction. Catalysis Today, 2020, 339, 321-327.	2.2	15
504	Photothermal tandem catalysis for CO2 hydrogenation to methanol. CheM, 2022, 8, 1181-1183.	5.8	15

#	Article	IF	CITATIONS
505	Synthesis and Characterization of New Quaternary BorocarbidesRRh2B2C (R=Rare Earth). Journal of Solid State Chemistry, 1997, 133, 77-81.	1.4	14

Some structural and photophysical properties of two functional double oxides Bi2MTaO7 (M = Ga and) Tj ETQq0 0.0 rgBT /Overlock 10 $\frac{10}{2.8}$

507	Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation. Journal of Materials Research, 2007, 22, 2590-2597.	1.2	14
508	Preparation and photocatalytic property of LiCr(WO4)2. Journal of Alloys and Compounds, 2009, 485, 346-350.	2.8	14
509	Synthesis of Hierarchical Macroâ€/Mesoporous Solidâ€Solution Photocatalysts by a Polymerization–Carbonization–Oxidation Route: The Case of Ce _{0.49} Zr _{0.37} Bi _{0.14} O _{1.93} . Chemistry - A European Iournal. 2010. 16. 8719-8725.	1.7	14
510	Mesoporous TiO ₂ /Zn ₂ Ti ₃ O ₈ hybrid films synthesized by polymeric micelle assembly. Chemical Communications, 2015, 51, 14582-14585.	2.2	14
511	Hematite homojunctions without foreign element doping for efficient and stable overall water splitting. RSC Advances, 2016, 6, 62263-62269.	1.7	14
512	Effect of band structure on the hot-electron transfer over Au photosensitized brookite TiO ₂ . Physical Chemistry Chemical Physics, 2016, 18, 3409-3412.	1.3	14
513	Interfacing Photosynthetic Membrane Protein with Mesoporous WO ₃ Photoelectrode for Solar Water Oxidation. Small, 2018, 14, e1800104.	5.2	14
514	Coke and sintering resistant nickel atomically doped with ceria nanosheets for highly efficient solar driven hydrogen production from bioethanol. Green Chemistry, 2022, 24, 2044-2050.	4.6	14
515	Electrical resistivity, oxidation resistivity and hardness of single crystal compounds in the Er–Rh–B system. Journal of Alloys and Compounds, 1998, 280, 65-70.	2.8	13
516	R-Dependency of the Hardness of Perovskite-Type RRh3B Compounds (R = La, Gd, Lu and Sc). Japanese Journal of Applied Physics, 2001, 40, 6037-6038.	0.8	13
517	Role of Modification Agent Coverage in Hydrogen Generation by the Reaction of Al with Water. Journal of the American Ceramic Society, 2010, 93, 2534-2536.	1.9	13
518	Preparation and characterization of visible light sensitive Fe- and Ta-codoped TiO2 photocatalyst. Journal of Materials Research, 2010, 25, 110-116.	1.2	13
519	Photoinduced degradation of organic dye over LiBiO3 under illumination of white fluorescent light. Journal of Materials Research, 2010, 25, 177-181.	1.2	13
520	Enhanced photocatalytic properties of biomimetic Ag/AgCl heterostructures. RSC Advances, 2014, 4, 31795-31798.	1.7	13
521	The Role of Ni-Based Cocatalyst in Inhomogeneous RVO ₄ Photocatalyst Systems (R = Y, Gd). Journal of Physical Chemistry C, 2014, 118, 12845-12854.	1.5	13
522	Solid-base loaded WO ₃ photocatalyst for decomposition of harmful organics under visible light irradiation. APL Materials, 2015, 3, 104411.	2.2	13

#	Article	IF	CITATIONS
523	Lipolysis and Lipid Oxidation during Processing of Chinese Traditional Dry-Cured White Amur Bream (<i>Parabramis pekinensis</i>). Journal of Aquatic Food Product Technology, 2017, 26, 719-730.	0.6	13
524	Significant enhancement in photocatalytic activity of (GaN)1â^'x(ZnO)x nanowires via solubility and crystal facet tailoring. AIP Advances, 2018, 8, .	0.6	13
525	Clâ^' modification for effective promotion of photoelectrochemical water oxidation over BiVO4. Chemical Communications, 2020, 56, 13153-13156.	2.2	13
526	Promoting charge separation by rational integration of a covalent organic framework on a BiVO ₄ photoanode. Chemical Communications, 2022, 58, 1796-1799.	2.2	13
527	Homogeneous solution assembled Turing structures with near zero strain semi-coherence interface. Nature Communications, 2022, 13, .	5.8	13
528	Single crystal growth and characterization of a new bismuth indium niobate compound, Bi5In2Nb3O18â^'x. Journal of Alloys and Compounds, 1999, 292, 72-76.	2.8	12
529	Molten metal flux growth and properties of CrSi2. Journal of Alloys and Compounds, 2004, 383, 319-321.	2.8	12
530	Correlation of crystal structures, electronic structures and photocatalytic properties in W-based oxides. Journal Physics D: Applied Physics, 2009, 42, 125402.	1.3	12
531	Inorganic alkaline-sols as precursors for rapid synthesis of ETS-10 microporous titanosilicates and their photocatalytic reforming of methanol under visible-light irradiation. Catalysis Communications, 2009, 11, 261-265.	1.6	12
532	Crystal structure of layered perovskite compound, Li ₂ LaTa ₂ O ₆ N. Powder Diffraction, 2011, 26, 4-8.	0.4	12
533	Identification of long noncoding RNA RP11-169F17.1 and RP11-669N7.2 as novel prognostic biomarkers of stomach adenocarcinoma based on integrated bioinformatics analysis. Epigenomics, 2019, 11, 1307-1321.	1.0	12
534	Photocarrier-assisted photothermocatalysis of Fischer–Tropsch synthesis for the enhanced yield of C2–C4 hydrocarbons over a Co/SrTiO ₃ catalyst. Catalysis Science and Technology, 2021, 11, 7029-7034.	2.1	12
535	Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency. IScience, 2021, 24, 102056.	1.9	12
536	Plasmonic Metal Nanoparticles for Artificial Photosynthesis: Advancements, Mechanisms, and Perspectives. Solar Rrl, 2021, 5, 2100611.	3.1	12
537	Efficient Photocatalytic Conversion of Methane into Ethanol over P-Doped g-C ₃ N ₄ under Ambient Conditions. Energy & Fuels, 2022, 36, 3929-3937.	2.5	12
538	Crystal growth and characterizations of ErRh3B2. Journal of Alloys and Compounds, 1997, 248, 18-23.	2.8	11
539	Synthesis, magnetic and electrical transport properties of the Bi2InNbO7 compound. Solid State Communications, 2000, 116, 259-263.	0.9	11
540	Fullerene nanowhiskers at liquid–liquid interface: A facile template for metal oxide (TiO2, CeO2) nanofibers and their photocatalytic activity. Materials Chemistry and Physics, 2011, 130, 211-217.	2.0	11

#	Article	IF	CITATIONS
541	Response to Comment on "High-Active Anatase TiO ₂ Nanosheets Exposed with 95% {100} Facets Toward Efficient H ₂ Evolution and CO ₂ Photoreduction†ACS Applied Materials & Interfaces, 2013, 5, 8262-8262.	4.0	11
542	Effects of cation concentration on photocatalytic performance over magnesium vanadates. APL Materials, 2015, 3, 104405.	2.2	11
543	Fabrication of a TiO ₂ /Fe ₂ O ₃ Core/Shell Nanostructure by Pulse Laser Deposition toward Stable and Visible Light Photoelectrochemical Water Splitting. ACS Omega, 2020, 5, 19861-19867.	1.6	11
544	Efficient electrochemical water oxidation to hydrogen peroxide over intrinsic carbon defect-rich carbon nanofibers. Journal of Materials Chemistry A, 2021, 9, 23994-24001.	5.2	11
545	Interfacial-Bonding Ti–N–C Boosts Efficient Photocatalytic H ₂ Evolution in Close Coupling g-C ₃ N ₄ /TiO ₂ . Journal of Physical Chemistry C, 2021, 125, 12012-12018.	1.5	11
546	Relaxation of crystallographic defects in YBa2Cu3O7â^î́ thin films by heat treatment and its effects on Tc. Physica C: Superconductivity and Its Applications, 1995, 254, 113-123.	0.6	10
547	Boron–Carbon Atomic Ratio Dependence on the Hardness and Oxidation Resistance of Solid Solutions of Perovskite-Type Borocarbide YRh3BxC1-x(0≦x≦1). Japanese Journal of Applied Physics, 2002, 41, 3031-	3032.	10
548	Single-crystal growth of silver-lead oxide Ag5Pb2O6 from fused nitrates. Journal of Crystal Growth, 2002, 241, 347-351.	0.7	10
549	Search for perovskite-type new borides in the Sc-TM-B (TM = Ti, V, Cr, Mn, Fe, Co, and Ni) systems. Journal of Alloys and Compounds, 2004, 383, 294-297.	2.8	10
550	Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. , 2010, , 293-295.		10
551	2-propanol photodegradation over molybdates: effects of chemical compositions and electronic structures. Journal Physics D: Applied Physics, 2010, 43, 085402.	1.3	10
552	Enhanced N-doping efficiency and photocatalytic H ₂ evolution rate of InNbO ₄ by mechanochemical activation. Journal of Materials Research, 2010, 25, 159-166.	1.2	10
553	Zr–Al co-doped SrTiO ₃ with suppressed charge recombination for efficient photocatalytic overall water splitting. Chemical Communications, 2021, 57, 10640-10643.	2.2	10
554	Growth and characterization of Va-Sn-Ga (Va = Ta, Nb, V) superconducting compounds. Journal of Crystal Growth, 1990, 99, 969-974.	0.7	9
555	Photophysical and photocatalytic properties of the visible-light-driven photocatalysts BaIn0.5Nb0.5O3, BaCo1/3Nb2/3O3 and BaNi1/3Nb2/3O3. Research on Chemical Intermediates, 2005, 31, 463-475.	1.3	9
556	Preparation of fine, uniform nitrogen- and sulfur-modified TiO2nanoparticles from titania nanotubes. Science and Technology of Advanced Materials, 2010, 11, 055001.	2.8	9
557	Band-Gap Engineering of NaNbO ₃ for Photocatalytic H ₂ Evolution with Visible Light. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	9
558	Enhancing the photocatalytic activity and photostability of zinc oxide nanorod arrays via graphitic carbon mediation. Chinese Journal of Catalysis, 2018, 39, 973-981.	6.9	9

#	Article	IF	CITATIONS
559	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 2070084.	3.1	9
560	Efficient photodegradation of 2-chloro-4-nitrophenol over Fe-doped BiOCl nanosheets with oxygen vacancy. Catalysis Science and Technology, 0, , .	2.1	9
561	Carbon Dioxide Conversion. ChemNanoMat, 2021, 7, 967-968.	1.5	9
562	Non-stoichiometric Ag-In-S quantum dots for efficient photocatalytic CO2 reduction: Ag/In molar ratio dependent activity and selectivity. Journal of Catalysis, 2021, 401, 271-278.	3.1	9
563	Plasmonâ€Enhanced CO Selective Oxidation in H ₂ over Pt Nanoclusters Supported on Metallic Molybdenum Dioxide Nanocrystals. Advanced Materials Interfaces, 2020, 7, 2001657.	1.9	9
564	Atomically dispersed Fe–N _{<i>x</i>} species within a porous carbon framework: an efficient catalyst for Li–CO ₂ batteries. Nanoscale, 2022, 14, 4511-4518.	2.8	9
565	Temperature dependence of lattice parameters in ζ2′ Au–49.5at.%Cd martensite and the relationship between parent and martensite. Scripta Materialia, 2003, 49, 291-295.	2.6	8
566	Hardness and oxidation resistance of perovskite-type borocarbide system YRh3BxC1â^'x (0≦x≦1). Journal o Alloys and Compounds, 2003, 354, 198-201.	of 2.8	8
567	Photocatalytic O2 evolution with the visible-light-driven photocatalysts M3V2O8 (M = Mg, Zn). Research on Chemical Intermediates, 2005, 31, 433-439.	1.3	8
568	Photophysical and photocatalytic properties of Li2M(WO4)2 (M = Co and Ni). Journal of Materials Research, 2008, 23, 3309-3315.	1.2	8
569	Nanoscale calcium bismuth mixed oxide with enhanced photocatalytic performance under visible light. Applied Catalysis A: General, 2010, 382, 190-196.	2.2	8
570	Lattice oxygen assisted room-temperature catalytic process: Secondary alcohol dehydrogenation over Au/birnessite photocatalyst. Applied Catalysis A: General, 2016, 521, 149-153.	2.2	8
571	Breaking Platinum Nanoparticles to Singleâ€Atomic Pt 4 Coâ€catalysts for Enhanced Solarâ€toâ€Hydrogen Conversion. Angewandte Chemie, 2021, 133, 2571-2577.	1.6	8
572	Magnetic and structural properties of superconducting PrBa2Cu3O grown by the TSFZ method. Journal of Alloys and Compounds, 1998, 275-277, 37-40.	2.8	7
573	Compositional dependence of crystallization in the glass-ceramics system Bi2O3-In2O3-MnO2-B2O3. Journal of Materials Science Letters, 2000, 19, 1987-1990.	0.5	7
574	Boron–carbon atomic ratio dependence on the hardness and oxidation resistance of perovskite-type solid solution ScRh3B C1â~. Journal of Alloys and Compounds, 2004, 375, 217-220.	2.8	7
575	Sol-gel synthesis and characterization of the photocatalyst BaCo1/3Nb2/3O3. Journal of Materials Science, 2006, 41, 1131-1135.	1.7	7
576	Dissociation of water molecule at three-fold oxygen coordinated V site on the InVO4 (001) surface. Applied Surface Science, 2008, 255, 679-681.	3.1	7

#	Article	IF	CITATIONS
577	Cold-welding fabrication of highly ordered gold nanochannel monolayers in aqueous medium. Chemical Communications, 2010, 46, 6912.	2.2	7
578	CO tolerance of Pt/FeOxcatalyst in both thermal catalytic H2oxidation and electrochemical CO oxidation: the effect of Pt deficit electron state. Physical Chemistry Chemical Physics, 2016, 18, 29607-29615.	1.3	7
579	Doping Ba into strontium titanate for enhanced photocatalytic oxygen evolution over its supported Au-based catalysts. Catalysis Communications, 2017, 99, 127-130.	1.6	7
580	A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions. Angewandte Chemie, 2018, 130, 17023-17026.	1.6	7
581	Self-Induced Strain in 2D Chalcogenide Nanocrystals with Enhanced Photoelectrochemical Responsivity. Chemistry of Materials, 2020, 32, 2774-2781.	3.2	7
582	The effect of Fe(<scp>iii</scp>) ions on oxygen-vacancy-rich BiVO ₄ on the photocatalytic oxygen evolution reaction. Catalysis Science and Technology, 2021, 11, 7598-7607.	2.1	7
583	Structural and Componential Engineering of Co ₂ P&CoP@N–C Nanoarrays for Energy-Efficient Hydrogen Production from Water Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 56064-56072.	4.0	7
584	Atomic Co Embedded in a Covalent Triazine Framework for Efficient Oxygen Evolution Catalysis. Energy & Fuels, 2022, 36, 11601-11608.	2.5	7
585	Structural disorder and relaxation in YBa2Cu3O7â^Î^ thin films and their influences on Tc. Physica C: Superconductivity and Its Applications, 1994, 235-240, 581-582.	0.6	6
586	Possible origins of superconductivity in PrBa2Cu3Ox compound viewed from results of single crystal structure study. Journal of Alloys and Compounds, 1999, 288, 319-325.	2.8	6
587	Solid-state 93Nb NMR Study of Nitrogen-doped Lamellar Niobic Acid. Chemistry Letters, 2013, 42, 1223-1224.	0.7	6
588	A Visible-light-responsive Photocatalyst of Nitrogen-doped Solid-acid HNb3O8-N Studied by Ultrahigh-field 1H MAS NMR and 1H–93Nb/1H–15N HETCOR NMR in Solids. Chemistry Letters, 2014, 43, 80-82.	0.7	6
589	Simultaneous determination of Ltx and Ltxd in cured meat products by LC/MS/MS. Food Chemistry, 2016, 210, 338-343.	4.2	6
590	Synergy between Confined Cobalt Centers and Oxygen Defects on αâ€Fe ₂ O ₃ Platelets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2022, 6, 2100833.	3.1	6
591	A synergetic strategy to construct anti-reflective and anti-corrosive Co-P/WSx/Si photocathode for durable hydrogen evolution in alkaline condition. Applied Catalysis B: Environmental, 2022, 304, 120954.	10.8	6
592	Arc-melting synthesis and crystal chemistry of RT2B2(C) (R=rare earth, T=Rh, Co) compounds. Journal of Alloys and Compounds, 1998, 275-277, 76-80.	2.8	5
593	Superconducting and non-superconducting PrBa2Cu3O7. Bulletin of Materials Science, 1999, 22, 257-263.	0.8	5
594	Synthesis of Perovskite Type-RERh3Bx (RE= La, Lu) Compounds and Study on Their Boron Nonstoichiometry and Hardness Journal of the Ceramic Society of Japan, 2000, 108, 683-686.	1.3	5

#	Article	IF	CITATIONS
595	Growth, photophysical and structural properties of Bi2InNbO7. Journal of Crystal Growth, 2001, 229, 462-466.	0.7	5
596	Decomposition of acetaldehyde on a Bi-based semiconductor. Research on Chemical Intermediates, 2005, 31, 499-503.	1.3	5
597	Photocatalytic properties of MIn(WO4)2 (M = Li, Na, and K). Journal of Materials Research, 2007, 22, 958-964.	1.2	5
598	Photoassisted fabrication of zinc indium oxide/oxysulfide composite for enhanced photocatalytic H ₂ evolution under visible-light irradiation. Science and Technology of Advanced Materials, 2012, 13, 055001.	2.8	5
599	Photocatalysis and Photoelectrochemistry for Solar Fuels. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	5
600	Stable visible-light photocatalytic degradation of organic pollutant by silver salt of Ti-substituted Keggin-type polyoxotungstate. Journal of Environmental Chemical Engineering, 2016, 4, 908-914.	3.3	5
601	Photothermal Catalysis: Targeting Activation of CO ₂ and H ₂ over Ruâ€Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO ₂ Methanation in Flowâ€Type System (Adv. Energy Mater. 5/2017). Advanced Energy Materials, 2017, 7, .	10.2	5
602	Plum Puddingâ€Like Electrocatalyst of Nâ€Doped SnO x @Sn Loaded on Carbon Matrix to Construct Photovoltaic CO 2 Reduction System with Solarâ€toâ€Fuel Efficiency of 11.3%. Solar Rrl, 2020, 4, 2000116.	3.1	5
603	Insight into the regulation between crystallinity and oxygen vacancies of BiVO ₄ affecting the photocatalytic oxygen evolution activity. Catalysis Science and Technology, 2022, 12, 4040-4049.	2.1	5
604	Insight of SrCl2 as an Appropriate Flux Medium in Synthesizing Al-Doped SrTiO3 Photocatalyst for Overall Water Splitting. Catalysis Letters, 2023, 153, 1083-1088.	1.4	5
605	Solid Solution Range of Boron, Microhardness and Magnetic Properties of the Perovskite-Type GdRh3B Obtained by Arc-melting Synthesis. Japanese Journal of Applied Physics, 1997, 36, L1436-L1439.	0.8	4
606	Synthesis and Properties of In2-xZnxCu2O5 (x = 0, 1) Compounds. Journal of Materials Science Letters, 1998, 17, 1191-1193.	0.5	4
607	Chemical state and properties of the Nb5Sn2Ga grown by the self-component flux method using tin as a solvent. Journal of Alloys and Compounds, 1998, 281, 196-201.	2.8	4
608	Preparation and magnetic properties of In2 â^' xZnxCu2O5 (x = 0–1.4) solid solution. Journal of Materials Science Letters, 1999, 18, 1387-1390.	0.5	4
609	Solid solution range of boron and properties of the perovskite-type NdRh3B. Journal of Alloys and Compounds, 2002, 335, 191-195.	2.8	4
610	Pressure-induced Magnetic Transition in the Van Vleck Paramagnet PrCu2. Journal of the Physical Society of Japan, 2003, 72, 1758-1762.	0.7	4
611	Structural characterization and photocatalytic behavior of β-KInW2O8. Research on Chemical Intermediates, 2005, 31, 505-512.	1.3	4
612	Low Temperature Synthesis and Visible Light Driven Photocatalytic Activity of Highly Crystalline Mesoporous TiO ₂ Particles. Journal of Nanoscience and Nanotechnology, 2010, 10, 8124-8129.	0.9	4

#	Article	IF	CITATIONS
613	Hybridization of sugar alcohols into brucite interlayers via a melt intercalation process. Journal of Colloid and Interface Science, 2012, 368, 578-583.	5.0	4
614	Efficient photochemical oxygen generation from water by phosphorus-doped H ₂ MoO ₅ . Chemical Communications, 2014, 50, 12185-12188.	2.2	4
615	Hematite photo-electrodes with multiple ultrathin SiOx interlayers towards enhanced photoelectrochemical properties. Electrochemistry Communications, 2014, 48, 17-20.	2.3	4
616	Study on the enhancement of photocatalytic environment purification through ubiquitous-red-clay loading. SN Applied Sciences, 2019, 1, 1.	1.5	4
617	Relationship between Boron Content and Hardness and Oxidation Resistance of the Nonstoichiometric Perovskite Type-ScRh3Bx Compound Journal of the Ceramic Society of Japan, 1999, 107, 546-550.	1.3	3
618	Possible origins of superconductivity in TSFZ-grown PrBa2Cu3Ox crystals. Physica C: Superconductivity and Its Applications, 2000, 341-348, 525-526.	0.6	3
619	Optical and electrical properties of solid photocatalyst Bi ₂ InNbO ₇ . Journal of Materials Research, 2000, 15, 2073-2075.	1.2	3
620	Crystal structure in PrBa2Cu4O8 single crystals. Journal of Physics and Chemistry of Solids, 2001, 62, 191-194.	1.9	3
621	Crystal growth and structural properties of RRh3B2 (R=Gd, Er, Tm) compounds. Journal of Crystal Growth, 2001, 229, 521-526.	0.7	3
622	Search for Perovskite-Type New Boride in the Sc–Ni–B System. Japanese Journal of Applied Physics, 2003, 42, 7464-7466.	0.8	3
623	High-Temperature Solution Growth and Characterization of Chromium Disilicide. Japanese Journal of Applied Physics, 2003, 42, 7292-7293.	0.8	3
624	Hardness and Oxidation Resistance of Perovskite-type Solid Solution of the ScRh3B–ScRh3C System. Japanese Journal of Applied Physics, 2003, 42, 5213-5214.	0.8	3
625	Substitution Effects of the Trivalent Cations M ³⁺ on the Photophysical and Photocatalytic Properties of In ₁₂ NiM ₂ Ti ₁₀ O ₄₂ (M) Tj	etqal 1	0.7 8 4314 rg
626	Photocatalytic activity of silver-loaded or unloaded titanium dioxide coating in the removal of hydrogen sulfide. Research on Chemical Intermediates, 2005, 31, 441-448.	1.3	3
627	Adsorption and Photodegradation Reactions of Anionic Dye on Zn-Al-substituting Layered Double Hydroxide. Transactions of the Materials Research Society of Japan, 2010, 35, 813-816.	0.2	3
628	SnO2â^'x/Sb2O3 composites synthesized by mechanical milling method with excellent photocatalytic properties for isopropyl alcohol oxidation. Journal of Materials Science: Materials in Electronics, 2020, 31, 8564-8577.	1.1	3
629	Synthesis and the Physical Properties of the Single Crystals of a New Quaternary Compound ErRh ₂ B ₂ C Using Molten Copper as a Flux. Journal of the Ceramic Society of Japan, 1996, 104, 1117-1120.	1.3	2
630	Doping effects in electrical and magnetic properties of Ba2â^'xâ^'ySrxLayCu3O4Cl2 (x=0â^1⁄42.0, y=0â^1⁄40.4) compounds. Physica C: Superconductivity and Its Applications, 2000, 341-348, 489-490.	0.6	2

#	Article	IF	CITATIONS
631	Single Crystalline MgB ₂ Superconductor. Journal of the Physical Society of Japan, 2002, 71, 320-322.	0.7	2
632	29 Effect of 3d transition-metal (M) doping in In1-xMx TaO4 photocatalysts on water splitting under visible light irradiation. Studies in Surface Science and Catalysis, 2003, 145, 165-168.	1.5	2
633	Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure. Applied Physics Letters, 2014, 104, .	1.5	2
634	Photocatalysis: Lightâ€5witchable Oxygen Vacancies in Ultrafine Bi ₅ O ₇ Br Nanotubes for Boosting Solarâ€Driven Nitrogen Fixation in Pure Water (Adv. Mater. 31/2017). Advanced Materials, 2017, 29, .	11.1	2
635	Defects in YBa2Cu3O7â^1̂ſ Thin Films and Their Influences on Tc. Materials Research Society Symposia Proceedings, 1995, 401, 429.	0.1	1
636	Characterization of Superconducting PrBa2Cu3Ox. International Journal of Modern Physics B, 1998, 12, 3242-3250.	1.0	1
637	Synthesis of the GdCo ₂ B ₂ C _{<i>x</i>} (<i>x</i> =0-1) and Study on the Changing of the Crystal Structure with Carbon Content, <:i>x<:/i>:. lournal of the Ceramic Society of Japan. 1998. 106. 299-302.	1.3	1
638	Changing of the Lattice Parameter with Boron or Carbon Content x in Nonstoichiometric Perovskite-Type YRh3Bx, YRh3Cx and YRh3BxC1-x Compounds Journal of the Ceramic Society of Japan, 1999, 107, 648-651.	1.3	1
639	The physical properties of the new quaternary borocarbides RRh2B2C (R=Gd, Sm and Nd). Physica B: Condensed Matter, 2000, 293, 91-97.	1.3	1
640	Photophysical and Photocatalytic Properties of MIn0.5Nb0.5O3 (M: Ca, Sr, and Ba) ChemInform, 2003, 34, no.	0.1	1
641	A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M: Ca, Sr, and Ba) with Special Electronic Structures ChemInform, 2003, 34, no.	0.1	1
642	Photophysical and Photocatalytic Properties of AgInW2O8 ChemInform, 2004, 35, no.	0.1	1
643	Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3 Composite Oxide Semiconductors ChemInform, 2005, 36, no.	0.1	1
644	Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M: Mg, Ni, Zn) ChemInform, 2005, 36, no.	0.1	1
645	Two-Dimensional Clustering of Nanoparticles on the Surface of Cellulose Fibers. Journal of Physical Chemistry C, 2009, 113, 12022-12027.	1.5	1
646	Crystal structure of silver metagermanate, Ag2GeO3. Powder Diffraction, 2010, 25, 15-18.	0.4	1
647	Green-Chemical Synthesis of ETS-4 Zeotypes for Photocatalytic Hydrogen Production. Advanced Materials Research, 2012, 584, 366-370.	0.3	1
648	Photodriven CO ₂ Reduction Assisted by Surface Plasmon Resonance of Nanometals. Hyomen Kagaku, 2017, 38, 280-285.	0.0	1

#	Article	IF	CITATIONS
649	Structural Differences of Superconducting and Non-Superconducting PrBa2Cu3Ox Crystals. , 1998, , 215-218.		1
650	Controllable Synthesis of Silver-Nanoparticle-Modified TiO ₂ Nanotube Arrays for Enhancing Photoelectrochemical Performance. Nanoscience and Nanotechnology Letters, 2014, 6, 672-680.	0.4	1
651	Arc Melting Synthesis and Properties of Perovskite Type HoRh3B Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 703-706.	0.1	0
652	A study of superconducting crystals by diffuse scattering measurement. Journal of Physics Condensed Matter, 1997, 9, 2585-2592.	0.7	0
653	Pressure Effects on Oxygen Deficient Superconducting PrBa2Cu3Ox. International Journal of Modern Physics B, 1998, 12, 3235-3241.	1.0	0
654	Hardness and Oxidation Resistance of Nonstoichiometric ErRh3Bx-Perovskite Journal of the Ceramic Society of Japan, 2000, 108, 1011-1015.	1.3	0
655	Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4: Effects on Photocatalytic Activity ChemInform, 2003, 34, no.	0.1	0
656	Preparation and Some Electrical Properties of Yttrium-Doped Antimonic Acids ChemInform, 2003, 34, no.	0.1	0
657	Photophysical and Photocatalytic Activities of a Novel Photocatalyst BaZn1/3Nb2/3O3 ChemInform, 2004, 35, no.	0.1	0
658	Some Structural and Photophysical Properties of Two Functional Double Oxides Bi2MTaO7 (M: Ga and) Tj ETQqQ	0.0 rgBT 0.1	/Oyerlock 10
659	Electronic Structure Properties of the Photo-Catalysts YVO4 and InVO4 Slab Systems with Water Molecules Adsorbed on the Surfaces. Materials Research Society Symposia Proceedings, 2009, 1171, 96.	0.1	0
660	Nano-Photocatalytic Materials for Solar Fuel Production. ECS Meeting Abstracts, 2013, , .	0.0	0
661	Preface for Special Topic: Photocatalysis. APL Materials, 2015, 3, 103801.	2.2	0
662	Interactive simulation of virtual trees spray. , 2015, , .		0
663	Rücktitelbild: Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation (Angew. Chem. 20/2017). Angewandte Chemie, 2017, 129, 5724-5724.	1.6	0
664	Stressed Lattice Creating New Electric Field for Photoelectrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 725-726.	1.3	0
665	Plum Puddingâ€Like Electrocatalyst of Nâ€Doped SnO _{<i>x</i>} @Sn Loaded on Carbon Matrix to Construct Photovoltaic CO ₂ Reduction System with Solarâ€toâ€Fuel Efficiency of 11.3%. Solar Rrl, 2020, 4, 2070072.	3.1	0
666	Efficient Methanol-to-Olefins Conversion Via Photothermal Effect Over TiN/SAPO-34 Catalyst. Catalysis Letters, 0, , 1.	1.4	0

#	Article	IF	CITATIONS
667	Substitution Effects of Ba by Sr and La in Physical and Structural Properties of Ba2Cu3O4Cl2 Compounds. , 2000, , 113-115.		0
668	Chapter 7. Nanoarchitechtonics of Photocatalytic Materials. RSC Nanoscience and Nanotechnology, 2012, , 165-187.	0.2	0
669	CHAPTER 10. New Materials: Outline. RSC Energy and Environment Series, 2016, , 245-251.	0.2	0
670	PbS1â^'xSex-Quantum-Dot@MWCNT/P3HT Nanocomposites with Tunable Photoelectric Conversion Performance. Inorganics, 2021, 9, 87.	1.2	0