
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the optical anisotropy in 2D metal-halide perovskites. Nanoscale, 2022, 14, 752-765.	5.6	15
2	Elucidating the electronic properties of single-wall carbon nanohorns. Journal of Materials Chemistry C, 2022, 10, 5783-5786.	5.5	5
3	Arresting Photodegradation in Semiconducting Single-Walled Carbon Nanotube Thin Films. ACS Applied Nano Materials, 2022, 5, 3502-3511.	5.0	2
4	The Structural Origin of Chiroptical Properties in Perovskite Nanocrystals with Chiral Organic Ligands. Advanced Functional Materials, 2022, 32, .	14.9	43
5	Carbon nanotubes in high-performance perovskite photovoltaics and other emerging optoelectronic applications. Journal of Applied Physics, 2021, 129, .	2.5	15
6	High-performance carbon nanotube electronic ratchets. Energy and Environmental Science, 2021, 14, 5457-5468.	30.8	8
7	Extracellular electron transfer across bio-nano interfaces for CO ₂ electroreduction. Nanoscale, 2021, 13, 1093-1102.	5.6	8
8	Interplay between microstructure, defect states, and mobile charge generation in transition metal dichalcogenide heterojunctions. Nanoscale, 2021, 13, 8188-8198.	5.6	2
9	Polyvinyl acetate-based polymer host for optical and far-infrared spectroscopy of individualized nanoparticles. Journal of Applied Physics, 2021, 129, 034701.	2.5	2
10	Charge transfer states and carrier generation in 1D organolead iodide semiconductors. Journal of Materials Chemistry A, 2021, 9, 14977-14990.	10.3	15
11	Linking optical spectra to free charges in donor/acceptor heterojunctions: cross-correlation of transient microwave and optical spectroscopy. Materials Horizons, 2021, 8, 1509-1517.	12.2	3
12	Exogenous electricity flowing through cyanobacterial photosystem I drives CO ₂ valorization with high energy efficiency. Energy and Environmental Science, 2021, 14, 5480-5490.	30.8	19
13	A Multi-Dimensional Perspective on Electronic Doping in Metal Halide Perovskites. ACS Energy Letters, 2021, 6, 1104-1123.	17.4	38
14	Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride–Carbon Nanotube Heterostructures. ACS Nano, 2021, 15, 7608-7617.	14.6	69
15	Solution-phase <i>p</i> -type doping of highly enriched semiconducting single-walled carbon nanotubes for thermoelectric thin films. Applied Physics Letters, 2021, 119, .	3.3	9
16	Pyroelectricity of Lead Sulfide (PbS) Quantum Dot Films Induced by Janus-Ligand Shells. ACS Nano, 2021, 15, 14965-14971.	14.6	8
17	Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Reviews, 2021, 121, 12465-12547.	47.7	186
18	Single-layer graphene as a highly selective barrier for vanadium crossover with high proton selectivity. Journal of Energy Chemistry, 2021, 59, 419-430.	12.9	17

#	Article	IF	CITATIONS
19	In Situ Synthesis of Molybdenum Carbide Nanoparticles Incorporated into Laserâ€Patterned Nitrogenâ€Doped Carbon for Room Temperature VOC Sensing. Advanced Functional Materials, 2021, 31, 2104061.	14.9	12
20	Interlayer Triplet-Sensitized Luminescence in Layered Two-Dimensional Hybrid Metal-Halide Perovskites. ACS Energy Letters, 2021, 6, 4079-4096.	17.4	22
21	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	30.8	69
22	Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity. Journal of Physical Chemistry Letters, 2020, 11, 99-107.	4.6	11
23	Spatially Resolved Persistent Photoconductivity in MoS ₂ –WS ₂ Lateral Heterostructures. ACS Nano, 2020, 14, 14080-14090.	14.6	36
24	Size―and Temperatureâ€Dependent Suppression of Phonon Thermal Conductivity in Carbon Nanotube Thermoelectric Films. Advanced Electronic Materials, 2020, 6, 2000746.	5.1	14
25	Perovskite Electronic Ratchets for Energy Harvesting. Advanced Electronic Materials, 2020, 6, 2000831.	5.1	7
26	Photoinduced charge transfer in transition metal dichalcogenide heterojunctions – towards next generation energy technologies. Energy and Environmental Science, 2020, 13, 2684-2740.	30.8	67
27	Using Carbon Laser Patterning to Produce Flexible, Metal-Free Humidity Sensors. ACS Applied Electronic Materials, 2020, 2, 4146-4154.	4.3	9
28	Disentangling oxygen and water vapor effects on optoelectronic properties of monolayer tungsten disulfide. Nanoscale, 2020, 12, 8344-8354.	5.6	11
29	Microsecond charge separation at heterojunctions between transition metal dichalcogenide monolayers and single-walled carbon nanotubes. Materials Horizons, 2019, 6, 2103-2111.	12.2	17
30	Carbon Nanotube Color Centers in Plasmonic Nanocavities: A Path to Photon Indistinguishability at Telecom Bands. Nano Letters, 2019, 19, 9037-9044.	9.1	35
31	Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS ₂ nanosheets. Nanoscale Horizons, 2019, 4, 619-624.	8.0	46
32	Rapid Charge-Transfer Cascade through SWCNT Composites Enabling Low-Voltage Losses for Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1872-1879.	17.4	33
33	Conductivity Tuning via Doping with Electron Donating and Withdrawing Molecules in Perovskite CsPbl ₃ Nanocrystal Films. Advanced Materials, 2019, 31, e1902250.	21.0	66
34	Intrinsic and Extrinsically Limited Thermoelectric Transport within Semiconducting Singleâ€Walled Carbon Nanotube Networks. Advanced Electronic Materials, 2019, 5, 1800910.	5.1	29
35	Effect of nanotube coupling on exciton transport in polymer-free monochiral semiconducting carbon nanotube networks. Nanoscale, 2019, 11, 21196-21206.	5.6	17
36	Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors. Journal of Physical Chemistry C, 2018, 122, 14150-14161.	3.1	18

#	Article	IF	CITATIONS
37	Carbonâ€Nanotubeâ€Based Thermoelectric Materials and Devices. Advanced Materials, 2018, 30, 1704386.	21.0	411
38	Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage. Nano Letters, 2018, 18, 865-873.	9.1	62
39	Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS ₂ Nanosheets via Covalent Functionalization. Journal of the American Chemical Society, 2018, 140, 441-450.	13.7	241
40	Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays. ACS Photonics, 2018, 5, 289-294.	6.6	5
41	Efficiency of Charge-Transfer Doping in Organic Semiconductors Probed with Quantitative Microwave and Direct-Current Conductance. Journal of Physical Chemistry Letters, 2018, 9, 6864-6870.	4.6	30
42	Diameter-Dependent Optical Absorption and Excitation Energy Transfer from Encapsulated Dye Molecules toward Single-Walled Carbon Nanotubes. ACS Nano, 2018, 12, 6881-6894.	14.6	33
43	A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Applied Physics Reviews, 2018, 5, 021303.	11.3	223
44	Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer. Journal of Physical Chemistry Letters, 2018, 9, 4841-4847.	4.6	6
45	Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas. Nanoscale, 2018, 10, 12631-12638.	5.6	3
46	Semiconducting Single-Walled Carbon Nanotubes in Solar Energy Harvesting. ACS Energy Letters, 2017, 2, 1598-1613.	17.4	82
47	Low-Temperature Single Carbon Nanotube Spectroscopy of sp ³ Quantum Defects. ACS Nano, 2017, 11, 10785-10796.	14.6	79
48	Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy and Environmental Science, 2017, 10, 2168-2179.	30.8	172
49	Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 2017, 11, 577-582.	31.4	235
50	Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nature Communications, 2017, 8, 1722.	12.8	107
51	Status and Prognosis of Future-Generation Photoconversion to Photovoltaics and Solar Fuels. ACS Energy Letters, 2016, 1, 344-347.	17.4	9
52	Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport. ACS Nano, 2016, 10, 11449-11458.	14.6	11
53	Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube–C ₆₀ Heterojunctions. Journal of Physical Chemistry Letters, 2016, 7, 1794-1799.	4.6	33
54	Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nature Chemistry, 2016, 8, 603-609.	13.6	79

#	Article	IF	CITATIONS
55	Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy and Environmental Science, 2016, 9, 2072-2082.	30.8	188
56	Photoluminescence Side Band Spectroscopy of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 23898-23904.	3.1	24
57	Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority Carrier Devices. ACS Nano, 2016, 10, 10808-10815.	14.6	15
58	Polymer-Free Carbon Nanotube Thermoelectrics with Improved Charge Carrier Transport and Power Factor. ACS Energy Letters, 2016, 1, 1212-1220.	17.4	76
59	Charge Transfer Dynamics between Carbon Nanotubes and Hybrid Organic Metal Halide Perovskite Films. Journal of Physical Chemistry Letters, 2016, 7, 418-425.	4.6	83
60	Experimental and Computational Investigation of Acetic Acid Deoxygenation over Oxophilic Molybdenum Carbide: Surface Chemistry and Active Site Identity. ACS Catalysis, 2016, 6, 1181-1197.	11.2	76
61	Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy and Environmental Science, 2016, 9, 1439-1449.	30.8	126
62	Effect of host-mobility dependent carrier scattering on thermoelectric power factors of polymer composites. Nano Energy, 2016, 19, 128-137.	16.0	25
63	Guided Photoluminescence from Integrated Carbonâ€Nanotubeâ€Based Optical Waveguides. Advanced Materials, 2015, 27, 6181-6186.	21.0	8
64	Precision printing and optical modeling of ultrathin SWCNT/C ₆₀ heterojunction solar cells. Nanoscale, 2015, 7, 6556-6566.	5.6	40
65	Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes. ACS Nano, 2015, 9, 6383-6393.	14.6	26
66	Quantum Confined Electron–Phonon Interaction in Silicon Nanocrystals. Nano Letters, 2015, 15, 1511-1516.	9.1	50
67	Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction. ACS Nano, 2015, 9, 5377-5390.	14.6	137
68	Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Research, 2015, 8, 1755-1769.	10.4	41
69	Graphene as an Efficient Interfacial Layer for Electrochromic Devices. ACS Applied Materials & Interfaces, 2015, 7, 11330-11336.	8.0	19
70	Suppression of the <inline-formula><tex-math>\${hbox{Cu}}_{2-x}{hbox{S}}\$</tex-math></inline-formula> Secondary Phases in CZTS Films Through Controlling the Film Elemental Composition. IEEE Journal of Photovoltaics, 2015, 5, 1470-1475.	2.5	9
71	Biological imaging without autofluorescence in the second near-infrared region. Nano Research, 2015, 8, 3027-3034.	10.4	263
72	Silyl Radical Abstraction in the Functionalization of Plasma-Synthesized Silicon Nanocrystals. Chemistry of Materials, 2015, 27, 6869-6878.	6.7	72

#	Article	IF	CITATIONS
73	Synthesis and Spectroscopy of PbSe Fused Quantum-Dot Dimers. Journal of the American Chemical Society, 2014, 136, 4670-4679.	13.7	32
74	Charge Separation in P3HT:SWCNT Blends Studied by EPR: Spin Signature of the Photoinduced Charged State in SWCNT. Journal of Physical Chemistry Letters, 2014, 5, 601-606.	4.6	13
75	Ultrafast Spectroscopic Signature of Charge Transfer between Single-Walled Carbon Nanotubes and C ₆₀ . ACS Nano, 2014, 8, 8573-8581.	14.6	62
76	Role of Dopants in Long-Range Charge Carrier Transport for p-Type and n-Type Graphene Transparent Conducting Thin Films. ACS Nano, 2013, 7, 7251-7261.	14.6	83
77	High-Yield Dispersions of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Tunable Narrow Chirality Distributions. ACS Nano, 2013, 7, 2231-2239.	14.6	203
78	Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 14896.	2.8	102
79	Plasmon-enhanced plastic devices. Nature Photonics, 2013, 7, 675-677.	31.4	13
80	Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics. Materials Letters, 2013, 90, 115-125.	2.6	63
81	Free Carrier Generation and Recombination in Polymer-Wrapped Semiconducting Carbon Nanotube Films and Heterojunctions. Journal of Physical Chemistry Letters, 2013, 4, 3550-3559.	4.6	42
82	Manipulation of Hydrogen Binding Energy and Desorption Kinetics by Boron Doping of High Surface Area Carbon. Journal of Physical Chemistry C, 2012, 116, 26138-26143.	3.1	7
83	Platinum Nanoplates as Fuel Cell Electrocatalysts. Journal of the Electrochemical Society, 2012, 159, F622-F627.	2.9	18
84	Unraveling the ¹³ C NMR Chemical Shifts in Single-Walled Carbon Nanotubes: Dependence on Diameter and Electronic Structure. Journal of the American Chemical Society, 2012, 134, 4850-4856.	13.7	18
85	Confirmation of K-Momentum Dark Exciton Vibronic Sidebands Using ¹³ C-labeled, Highly Enriched (6,5) Single-walled Carbon Nanotubes. Nano Letters, 2012, 12, 1398-1403.	9.1	47
86	Effect of Solvent Polarity and Electrophilicity on Quantum Yields and Solvatochromic Shifts of Single-Walled Carbon Nanotube Photoluminescence. Journal of the American Chemical Society, 2012, 134, 12485-12491.	13.7	91
87	Spectroscopic Identification of Hydrogen Spillover Species in Ruthenium-Modified High Surface Area Carbons by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26744-26755.	3.1	32
88	Reactions and reversible hydrogenation of single-walled carbon nanotube anions. Journal of Materials Research, 2012, 27, 2806-2811.	2.6	2
89	Control of PbSe Quantum Dot Surface Chemistry and Photophysics Using an Alkylselenide Ligand. ACS Nano, 2012, 6, 5498-5506.	14.6	99
90	Comparing the Fundamental Physics and Device Performance of Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting Oxides. Advanced Energy Materials, 2012, 2, 353-360.	19.5	140

#	Article	IF	CITATIONS
91	High-Performance Hydrogen Production and Oxidation Electrodes with Hydrogenase Supported on Metallic Single-Wall CarbonNanotube Networks. Journal of the American Chemical Society, 2011, 133, 4299-4306.	13.7	61
92	Homeotropic Alignment and Director Structures in Thin Films of Triphenylamine-Based Discotic Liquid Crystals Controlled by Supporting Nanostructured Substrates and Surface Confinement. Journal of Physical Chemistry B, 2011, 115, 609-617.	2.6	38
93	n-Type Transparent Conducting Films of Small Molecule and Polymer Amine Doped Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 3714-3723.	14.6	109
94	Correlation between Photooxidation and the Appearance of Raman Scattering Bands in Lead Chalcogenide Quantum Dots. Journal of Physical Chemistry Letters, 2011, 2, 599-603.	4.6	35
95	Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes. ACS Nano, 2011, 5, 3943-3953.	14.6	65
96	Photoinduced Energy and Charge Transfer in P3HT:SWNT Composites. Journal of Physical Chemistry Letters, 2010, 1, 2406-2411.	4.6	66
97	Nanostructured Fe ₃ O ₄ /SWNT Electrode: Binderâ€Free and Highâ€Rate Liâ€Ion Anode. Advanced Materials, 2010, 22, E145-9.	21.0	556
98	Solid-State ¹³ C NMR Assignment of Carbon Resonances on Metallic and Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 9956-9957.	13.7	28
99	Prolonging Charge Separation in P3HTâ^'SWNT Composites Using Highly Enriched Semiconducting Nanotubes. Nano Letters, 2010, 10, 4627-4633.	9.1	106
100	Ultrasmooth, Largeâ€Area, Highâ€Uniformity, Conductive Transparent Singleâ€Walledâ€Carbonâ€Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying. Advanced Materials, 2009, 21, 3210-3216.	21.0	398
101	Transparent Conductive Single-Walled Carbon Nanotube Networks with Precisely Tunable Ratios of Semiconducting and Metallic Nanotubes. ACS Nano, 2008, 2, 1266-1274.	14.6	297
102	Measurement of the reversible hydrogen storage capacity of milligram Ti–6Al–4V alloy samples with temperature programmed desorption and volumetric techniques. Journal of Alloys and Compounds, 2008, 454, 483-490.	5.5	25
103	Protonation Effects on the Branching Ratio in Photoexcited Single-Walled Carbon Nanotube Dispersions. Nano Letters, 2008, 8, 1047-1054.	9.1	42
104	Efficient Photoinduced Charge Injection from Chemical Bath Deposited CdS into Mesoporous TiO ₂ Probed with Time-Resolved Microwave Conductivity. Journal of Physical Chemistry C, 2008, 112, 7742-7749.	3.1	35
105	Photogenerated Free Carrier Dynamics in Metal and Semiconductor Single-Walled Carbon Nanotube Films. Nano Letters, 2008, 8, 4238-4242.	9.1	77
106	Chiral-Selective Protection of Single-walled Carbon Nanotube Photoluminescence by Surfactant Selection. Journal of Physical Chemistry C, 2007, 111, 17894-17900.	3.1	28
107	Nontrivial Tuning of the Hydrogen-Binding Energy to Fullerenes with Endohedral Metal Dopants. Journal of Physical Chemistry C, 2007, 111, 13275-13279.	3.1	11
108	Temperature-Dependent Excitonic Decay and Multiple States in Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3601-3606.	3.1	21

JEFFREY L BLACKBURN

#	Article	IF	CITATIONS
109	Wiring-Up Hydrogenase with Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 3528-3534.	9.1	106
110	Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications. Solid State Ionics, 2007, 178, 895-900.	2.7	48
111	Synthesis and Characterization of Boron-Doped Single-Wall Carbon Nanotubes Produced by the Laser Vaporization Technique. Chemistry of Materials, 2006, 18, 2558-2566.	6.7	69
112	Effects of Surfactant and Boron Doping on the BWF Feature in the Raman Spectrum of Single-Wall Carbon Nanotube Aqueous Dispersionsâ€. Journal of Physical Chemistry B, 2006, 110, 25551-25558.	2.6	40
113	Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications. Thin Solid Films, 2006, 501, 216-220.	1.8	34
114	Toward rapid and inexpensive identification of bulk carbon nanotubes. Applied Physics Letters, 2006, 88, 143122.	3.3	8
115	Experimental Gibbs Free Energy Considerations in the Nucleation and Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 10435-10440.	2.6	17
116	Electron and Hole Transfer from Indium Phosphide Quantum Dots. Journal of Physical Chemistry B, 2005, 109, 2625-2631.	2.6	118
117	Electron Relaxation in Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically Injected Electrons. Journal of Physical Chemistry B, 2003, 107, 102-109.	2.6	90
118	Excitation Energy Dependent Efficiency of Charge Carrier Relaxation and Photoluminescence in Colloidal InP Quantum Dots. Journal of Physical Chemistry B, 2002, 106, 7758-7765.	2.6	79