
Bo-Tao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815589/publications.pdf Version: 2024-02-01

ΒΟ-ΤΛΟ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cement and Concrete Composites, 2022, 125, 104296.	4.6	91
2	Artificial alkali-activated aggregates developed from wastes and by-products: A state-of-the-art review. Resources, Conservation and Recycling, 2022, 177, 105971.	5.3	51
3	Development of ultrahigh-strength ultrahigh-toughness cementitious composites (UHS-UHTCC) using polyethylene and steel fibers. Composites Communications, 2022, 29, 100992.	3.3	15
4	Prefabricated UHPC-concrete-ECC underground utility tunnel reinforced by perforated steel plate: Experimental and numerical investigations. Case Studies in Construction Materials, 2022, 16, e00856.	0.8	6
5	Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Composites Communications, 2022, 30, 101081.	3.3	67
6	Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites. Frontiers of Structural and Civil Engineering, 2022, 16, 145-160.	1.2	14
7	Flexural strengthening of reinforced concrete beams using geopolymer-bonded small-diameter CFRP bars. Engineering Structures, 2022, 256, 113992.	2.6	41
8	Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber hybridization. Cement and Concrete Composites, 2022, 129, 104464.	4.6	80
9	Recent developments in Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) with high and ultra-high strength. Construction and Building Materials, 2022, 342, 127956.	3.2	50
10	Tailoring strain-hardening behavior of high-strength Engineered Cementitious Composites (ECC) using hybrid silica sand and artificial geopolymer aggregates. Materials and Design, 2022, 220, 110876.	3.3	32
11	Enhancing long-term tensile performance of Engineered Cementitious Composites (ECC) using sustainable artificial geopolymer aggregates. Cement and Concrete Composites, 2022, 133, 104676.	4.6	34
12	Bond performance of FRP bars in plain and fiber-reinforced geopolymer under pull-out loading. Journal of Building Engineering, 2022, 57, 104893.	1.6	6
13	Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics. Cement and Concrete Research, 2021, 140, 106292.	4.6	135
14	Effect of fiber content on mechanical performance and cracking characteristics of ultra-high-performance seawater sea-sand concrete (UHP-SSC). Advances in Structural Engineering, 2021, 24, 1182-1195.	1.2	49
15	Flexural Performance of UHPC–Concrete–ECC Composite Member Reinforced with Perforated Steel Plates. Journal of Structural Engineering, 2021, 147, .	1.7	46
16	Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: A novel approach. Engineering Fracture Mechanics, 2021, 253, 107849.	2.0	31
17	Engineered/strain-hardening cementitious composites (ECC/SHCC) with an ultra-high compressive strength over 210AMPa. Composites Communications, 2021, 26, 100775.	3.3	73
18	Development of artificial one-part geopolymer lightweight aggregates by crushing technique. Journal of Cleaner Production, 2021, 315, 128200.	4.6	49

BO-TAO HUANG

#	Article	IF	CITATIONS
19	Development of engineered cementitious composites (ECC) using artificial fine aggregates. Construction and Building Materials, 2021, 305, 124742.	3.2	47
20	Shear fracture performance of the interface between ultra-high toughness cementitious composites and reactive powder concrete. Composite Structures, 2021, 275, 114403.	3.1	15
21	Tensile and Compressive Performance of High-Strength Engineered Cementitious Composites (ECC) with Seawater and Sea-Sand. RILEM Bookseries, 2021, , 1034-1041.	0.2	3
22	Recent Advances in Strain-Hardening UHPC with Synthetic Fibers. Journal of Composites Science, 2021, 5, 283.	1.4	21
23	High-strength seawater sea-sand Engineered Cementitious Composites (SS-ECC): Mechanical performance and probabilistic modeling. Cement and Concrete Composites, 2020, 114, 103740.	4.6	85
24	Fire Performance of Steel-Reinforced Ultrahigh-Toughness Cementitious Composite Columns: Experimental Investigation and Numerical Analyses. Journal of Structural Engineering, 2020, 146, .	1.7	8
25	Seawater sea-sand Engineered Cementitious Composites (SS-ECC) for marine and coastal applications. Composites Communications, 2020, 20, 100353.	3.3	90
26	Experimental study on full-volume fly ash geopolymer mortars: Sintered fly ash versus sand as fine aggregates. Journal of Cleaner Production, 2020, 263, 121445.	4.6	46
27	Static and fatigue performance of reinforced concrete beam strengthened with strain-hardening fiber-reinforced cementitious composite. Engineering Structures, 2019, 199, 109576.	2.6	50
28	Strengthening of reinforced concrete structure using sprayable fiber-reinforced cementitious composites with high ductility. Composite Structures, 2019, 220, 940-952.	3.1	77
29	Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function. Journal of Structural Engineering, 2019, 145, .	1.7	71
30	Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer. Construction and Building Materials, 2018, 164, 238-245.	3.2	86
31	Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: Experimental study and novel P - S - N model. Construction and Building Materials, 2018, 178, 349-359.	3.2	67
32	Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression. Materials and Design, 2018, 157, 457-468.	3.3	81
33	Frequency Effect on the Compressive Fatigue Behavior of Ultrahigh Toughness Cementitious Composites: Experimental Study and Probabilistic Analysis. Journal of Structural Engineering, 2017, 143, .	1.7	38
34	Development of reinforced ultra-high toughness cementitious composite permanent formwork: Experimental study and Digital Image Correlation analysis. Composite Structures, 2017, 180, 892-903.	3.1	75
35	Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility. Cement and Concrete Research, 2016, 90, 174-183.	4.6	87
36	Development of assembled permanent formwork using ultra high toughness cementitious composites. Advances in Structural Engineering, 2016, 19, 1142-1152.	1.2	34