Shengping Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6815588/publications.pdf

Version: 2024-02-01

159585 197818 3,289 134 30 49 citations g-index h-index papers 135 135 135 1378 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 2010, 58, 665-677.	4.8	369
2	Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 2014, 23, 035020.	3.5	130
3	Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1497-1504.	5.1	124
4	Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mechanica, 2015, 226, 3097-3110.	2.1	91
5	Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 2015, 24, 105012.	3.5	89
6	SIZE-DEPENDENT PIEZOELECTRICITY AND ELASTICITY DUE TO THE ELECTRIC FIELD-STRAIN GRADIENT COUPLING AND STRAIN GRADIENT ELASTICITY. International Journal of Applied Mechanics, 2013, 05, 1350015.	2.2	75
7	Flexoelectret: An Electret with a Tunable Flexoelectriclike Response. Physical Review Letters, 2019, 122, 148001.	7.8	74
8	Mixed Finite Elements for Flexoelectric Solids. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	2.2	69
9	Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire. Smart Materials and Structures, 2012, 21, 115024.	3.5	62
10	Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride. Journal of Applied Physics, 2016, 119, .	2.5	61
11	The basis of meshless domain discretization: the meshless local Petrov?Galerkin (MLPG) method. Advances in Computational Mathematics, 2005, 23, 73-93.	1.6	60
12	Interface crack in bi-piezothermoelastic media and the interaction with a point heat source. International Journal of Solids and Structures, 1998, 35, 3899-3915.	2.7	53
13	Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Materials and Structures, 2017, 26, 035050.	3.5	53
14	A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 2016, 51, 1181-1188.	2.0	50
15	The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 2020, 128, .	2.5	50
16	An active control model of laminated piezothermoelastic plate. International Journal of Solids and Structures, 1999, 36, 1925-1947.	2.7	48
17	Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes. Acta Mechanica, 2013, 224, 2895-2910.	2.1	47
18	A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 2014, 111, 317-323.	5.8	47

#	Article	IF	CITATIONS
19	Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. Journal Physics D: Applied Physics, 2016, 49, 115307.	2.8	46
20	Flexoelectric energy harvesters based on Timoshenko laminated beam theory. Journal of Intelligent Material Systems and Structures, 2017, 28, 2064-2073.	2.5	46
21	General approach on chemistry and stress coupling effects during oxidation. Journal of Applied Physics, 2013, 114, .	2.5	44
22	Shear flexoelectric coefficient $\langle i \rangle \hat{l}^{1}/4 \langle i \rangle 1211$ in polyvinylidene fluoride. Journal of Applied Physics, 2015, 117, .	2.5	43
23	Bernoulli–Euler Dielectric Beam Model Based on Strain-Gradient Effect. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	39
24	Stabilizing mechanism of single-atom catalysts on a defective carbon surface. Npj Computational Materials, 2020, 6, .	8.7	38
25	A curved resonant flexoelectric actuator. Applied Physics Letters, 2017, 111, .	3.3	37
26	Love waves in layered flexoelectric structures. Philosophical Magazine, 2017, 97, 3186-3209.	1.6	36
27	On the large-strain plasticity of silicon nanowires: Effects of axial orientation and surface. International Journal of Plasticity, 2012, 38, 146-158.	8.8	35
28	A flexoelectricity effect-based sensor for direct torque measurement. Journal Physics D: Applied Physics, 2015, 48, 485502.	2.8	33
29	Reaction–Diffusion–Stress Coupling Effect in Inelastic Oxide Scale During Oxidation. Oxidation of Metals, 2015, 83, 507-519.	2.1	33
30	Investigation of the 2312 flexoelectric coefficient component of polyvinylidene fluoride: Deduction, simulation, and mensuration. Scientific Reports, 2017, 7, 3134.	3.3	33
31	Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment. Journal of Applied Physics, 2017, 122, .	2.5	33
32	Surface effects on the post-buckling of piezoelectric nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 61-64.	2.7	32
33	A Three-Dimensional Mixed Finite Element for Flexoelectricity. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	32
34	Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Materials and Structures, 2018, 27, 085003.	3.5	32
35	Dynamical theoretical model and variational principles for coupled temperature–diffusion–mechanics. Acta Mechanica, 2012, 223, 29-41.	2.1	31
36	Wave Propagation in Flexoelectric Microstructured Solids. Journal of Elasticity, 2018, 130, 197-210.	1.9	31

#	Article	IF	Citations
37	The flexodynamic effect on nanoscale flexoelectric energy harvesting: a computational approach. Smart Materials and Structures, 2018, 27, 105001.	3.5	30
38	Electromechanical analysis of direct and converse flexoelectric effects under a scanning probe tip. Journal of the Mechanics and Physics of Solids, 2020, 142, 104020.	4.8	30
39	Shear flexoelectric response along 3121 direction in polyvinylidene fluoride. Applied Physics Letters, 2015, 107, .	3.3	29
40	Rayleigh wave propagation in a homogeneous centrosymmetric flexoelectric half-space. Ultrasonics, 2020, 103, 106105.	3.9	26
41	DynamicJintegral, separated dynamicJintegral and component separation method for dynamic interfacial cracks in piezoelectric bimaterials. International Journal of Fracture, 2003, 122, 101-130.	2.2	25
42	A Fully Coupled Theory and Variational Principle for Thermal–Electrical–Chemical–Mechanical Processes. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	25
43	Experimental method research on transverse flexoelectric response of poly(vinylidene fluoride). Japanese Journal of Applied Physics, 2016, 55, 071601.	1.5	25
44	Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	24
45	The research of effective flexoelectric coefficient along 1123 direction in polyvinylidene fluoride. Journal of Applied Physics, 2017, 121, .	2.5	22
46	Stability of stacking fault tetrahedron in twin boundary bicrystal copper under shear. International Journal of Plasticity, 2017, 97, 246-258.	8.8	22
47	Multiscale analysis of the effects of nanocavity on nanoindentation. Computational Materials Science, 2009, 46, 425-430.	3.0	21
48	Energetics of point defect interacting with grain boundaries undergone plastic deformations. International Journal of Plasticity, 2016, 85, 93-109.	8.8	21
49	Experimental and numerical investigations on the tensile behavior of 3D random fibrous materials at elevated temperature. Composite Structures, 2017, 160, 292-299.	5.8	21
50	Athermal Shape Memory Effect in Magnetoactive Elastomers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16930-16936.	8.0	21
51	Effects of void–crack interaction and void distribution on crack propagation in single crystal silicon. Engineering Fracture Mechanics, 2015, 146, 56-66.	4.3	20
52	Revisiting the structures and energies of silicon $\tilde{a}\in 110\tilde{a}\in \infty$ symmetric tilt grain boundaries. Journal of Materials Research, 2019, 34, 1021-1033.	2.6	20
53	Interface crack problems of a laminated piezoelectric plate. European Journal of Mechanics, A/Solids, 1999, 18, 219-238.	3.7	19
54	Coupling diffusion–reaction–mechanics model for oxidation. Acta Mechanica, 2015, 226, 3375-3386.	2.1	19

#	Article	IF	Citations
55	On band structures of layered phononic crystals with flexoelectricity. Archive of Applied Mechanics, 2018, 88, 629-644.	2.2	19
56	Forced vibration of piezoelectric and flexoelectric Euler–Bernoulli beams by dynamic Green's functions. Acta Mechanica, 2021, 232, 449-460.	2.1	18
57	Converse flexoelectricity with relative permittivity gradient. Applied Physics Letters, 2019, 114, .	3.3	17
58	An actuation method by a biconcave beam structure with converse flexoelectric effect. Smart Materials and Structures, 2019, 28, 115025.	3.5	17
59	Analytical solution for one-dimensional coupled non-Fick diffusion and mechanics. Archive of Applied Mechanics, 2013, 83, 397-411.	2.2	16
60	Interaction of voids and nano-ductility in single crystal silicon. Computational Materials Science, 2013, 67, 123-132.	3.0	16
61	Investigations on the compressive behavior of 3D random fibrous materials at elevated temperatures. Ceramics International, 2017, 43, 5195-5203.	4.8	16
62	Conservation laws and path-independent integrals in mechanical-diffusion-electrochemical reaction coupling system. Journal of the Mechanics and Physics of Solids, 2017, 104, 57-70.	4.8	15
63	Residual Stress Analysis Due to Chemomechanical Coupled Effect, Intrinsic Strain and Creep Deformation During Oxidation. Oxidation of Metals, 2015, 84, 413-427.	2.1	14
64	Nonhysteretic superelasticity and strain hardening in a copper bicrystal with a \hat{a}^{3} 112 twin boundary. Acta Materialia, 2017, 124, 30-36.	7.9	14
65	High-temperature nanoindentation for temperature-dependent mechanical behavior of enamel coating. Surface and Coatings Technology, 2019, 374, 541-548.	4.8	14
66	Tunable Flexoelectricity of Elastomers. Journal of Physical Chemistry C, 2020, 124, 24429-24434.	3.1	14
67	Flexoelectric Energy Harvesting Using Circular Thin Membranes. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	14
68	Effect of surface roughness on elastic limit of silicon nanowires. Computational Materials Science, 2015, 101, 267-274.	3.0	13
69	Electrochemomechanics with flexoelectricity and modelling of electrochemical strain microscopy in mixed ionic-electronic conductors. Journal of Applied Physics, 2016, 120, 065102.	2.5	13
70	Flexoelectricity in pyramid compression: decoupling from effective to intrinsic. Journal Physics D: Applied Physics, 2020, 53, 125302.	2.8	13
71	Inverse Flexoelectret Effect: Bending Dielectrics by a Uniform Electric Field. Physical Review Applied, 2021, 15, .	3.8	13
72	Facilitating electrocatalytic hydrogen evolution <i>via</i> multifunctional tungsten@tungsten disulfide core–shell nanospheres. Journal of Materials Chemistry A, 2021, 9, 9272-9280.	10.3	13

#	Article	lF	CITATIONS
73	Effects of small indenter size and its position on incipient yield loading during nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 526, 211-218.	5.6	12
74	Probing flexoelectricity via a split Hopkinson pressure bar experiment. Applied Physics Letters, 2018 , 112 , .	3.3	12
75	Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: A review. Science China Technological Sciences, 2019, 62, 1246-1254.	4.0	12
76	Path-independent integrals in electrochemomechanical systems with flexoelectricity. International Journal of Solids and Structures, 2018, 147, 20-28.	2.7	11
77	Coupled chemomechanical theory with strain gradient and surface effects. Acta Mechanica, 2018, 229, 133-147.	2.1	11
78	Size-dependent stability of stacking fault tetrahedron in coherent twin boundary bicrystal: Comparisons among Al, Ni, Cu and Ag. Computational Materials Science, 2018, 155, 256-265.	3.0	11
79	Decoupled shear flexoelectric effects in polymers. Journal of Applied Physics, 2019, 125, .	2.5	11
80	Edge dislocations interacting with a $\hat{1}$ £11 symmetrical grain boundary in copper upon mixed loading: A quasicontinuum method study. Computational Materials Science, 2017, 137, 162-170.	3.0	11
81	Effect of electrostatic force on a piezoelectric nanobeam. Smart Materials and Structures, 2012, 21, 015001.	3.5	10
82	Adhesion properties of $Cu(111)\hat{\Pi}$ ±-quartz (0001) interfaces: A molecular dynamics study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 695, 239-248.	5.6	10
83	Radiation response of nanotwinned Cu under multiple-collision cascades. Journal of Nuclear Materials, 2018, 505, 183-192.	2.7	10
84	A Fully Coupled Chemomechanical Formulation With Chemical Reaction Implemented by Finite Element Method. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	10
85	Structure and shear response of <001> tilt grain boundary in titanium nitride. Ceramics International, 2019, 45, 5531-5546.	4.8	10
86	Initial dislocation topologies of nanoindentation into copper (001) film with a nanocavity. Engineering Fracture Mechanics, 2010, 77, 3329-3340.	4.3	9
87	Energetics of point defect interacting with bi-crystal Σ3 copper grain boundaries. Computational Materials Science, 2016, 118, 47-55.	3.0	9
88	Fracture toughness of random fibrous materials with ultrahigh porosity at elevated temperatures. Journal of the American Ceramic Society, 2018, 101, 1323-1332.	3.8	9
89	Investigations on fracture toughness and fracture surface energy of 3D random fibrous materials at elevated temperatures. Engineering Fracture Mechanics, 2018, 190, 288-298.	4.3	9
90	Experimental decoupling of cylindrical flexoelectric coefficients. Applied Physics Letters, 2018, 113, .	3.3	9

#	Article	IF	Citations
91	Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. Journal Physics D: Applied Physics, 2019, 52, 075302.	2.8	9
92	Tailoring the nanostructures of electrochemical actuators for fast response and large deformation. Nanoscale, 2020, 12, 15643-15651.	5.6	9
93	Experimental approach for measuring cylindrical flexoelectric coefficients. Journal of Applied Physics, 2017, 122, .	2.5	8
94	Shear response of grain boundary bicrystals with a stacking fault tetrahedron. Computational Materials Science, 2018, 147, 137-144.	3.0	8
95	Response of <110> symmetric tilt grain boundary in titanium nitride under shear. Engineering Analysis With Boundary Elements, 2019, 105, 231-241.	3.7	8
96	A novel evaluation of fracture toughness for random fibrous material. Composite Structures, 2020, 243, 112179.	5.8	8
97	Effect of crystallization on the macro and micro residual stress of enamel coating. Journal of the European Ceramic Society, 2021, 41, 3643-3654.	5.7	8
98	Giant flexoelectric response via mechanical and material design in elastomers. Mechanics of Materials, 2022, 165, 104186.	3.2	8
99	Impact interfacial fracture for piezoelectric ceramic. Mechanics Research Communications, 1999, 26, 347-352.	1.8	7
100	A Chemomechanical Model for Stress Evolution and Distribution in the Viscoplastic Oxide Scale During Oxidation. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	7
101	A Finite Element Implementation of a Fully Coupled Mechanical–Chemical Theory. International Journal of Applied Mechanics, 2017, 09, 1750040.	2.2	7
102	Numerical analysis for a crack in piezoelectric material under impact. International Journal of Solids and Structures, 2007, 44, 8457-8492.	2.7	6
103	Fracture of \hat{l}^2 -SiC bulk with a void of different shapes under different loading modes. Engineering Fracture Mechanics, 2017, 181, 29-37.	4.3	6
104	An ABAQUS implementation of electrochemomechanical theory for mixed ionic electronic conductors. Solid State Ionics, 2018, 319, 34-45.	2.7	6
105	Porosity Effects on Mechanical Properties of 3D Random Fibrous Materials at Elevated Temperatures. Acta Mechanica Solida Sinica, 2020, 33, 14-30.	1.9	6
106	Diversity of transverse flexoelectricity in non-poled polyvinylidene fluoride. Journal of Applied Physics, 2020, 128, .	2.5	6
107	Flexoelectricity in periodically poled lithium niobate by PFM. Journal Physics D: Applied Physics, 2022, 55, 335303.	2.8	6
108	Chemomechanical analysis for interfacial reactions between γâ€TiAl alloy and glassâ€eeramic coating in micro/nano scale. Journal of the American Ceramic Society, 2018, 101, 5675-5683.	3.8	5

#	Article	IF	Citations
109	Highâ€temperature shortâ€range compressive responses and contact effect of ultrahigh porosity 3D random fibrous materials. Journal of the American Ceramic Society, 2018, 101, 4509-4518.	3.8	5
110	Decoupling method of flexoelectric coefficient tensor components in non-polarized polyvinylidene fluoride. Journal Physics D: Applied Physics, 2020, 53, 325303.	2.8	5
111	Mechanical tunability of flexoelectricity in elastomers. Applied Physics Letters, 2021, 119, .	3.3	5
112	Dynamic mechanical behaviour of three-dimensional random fibrous materials at high temperatures. Composite Structures, 2021, 276, 114593.	5.8	5
113	A chemomechanical coupling model for stress analysis of oxide scale growing between ceramic coating and substrate. Acta Mechanica, 2017, 228, 3173-3183.	2.1	4
114	Ferroelectric-like hysteresis loops induced by chemical reaction and flexoelectricity in electrochemical strain microscopy measurements. Journal of Applied Physics, 2018, 124, 085116.	2.5	4
115	Strain-modulated early stage oxidation of Fe films. Journal of Applied Physics, 2019, 125, .	2.5	4
116	An electro-mechanical behavior enhancement method: geometric design with flexoelectricity. Smart Materials and Structures, 2019, 28, 025024.	3.5	4
117	Diversifying temporal responses of magnetoactive elastomers. Materials Research Express, 2020, 7, 045702.	1.6	4
118	Nonlinear electrochemomechanical modelling of electrochemical strain microscopy imaging. Nanotechnology, 2020, 31, 315704.	2.6	4
119	Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1930-1937.	5.1	3
120	Fully Coupling Chemomechanical Yield Theory Based on Evolution Equations. International Journal of Applied Mechanics, 2016, 08, 1650058.	2.2	3
121	A chemomechanical coupling model for oxidation and stress evolution in ZrB2–SiC. Journal of Materials Research, 2017, 32, 1267-1278.	2.6	3
122	Shear response of \hat{l}^2 -SiC bulk dependent on temperature and strain rate. Acta Mechanica Solida Sinica, 2017, 30, 137-144.	1.9	3
123	Strain hardening and embrittlement of Al crystal with a surface oxidized void. Mechanics of Materials, 2020, 148, 103531.	3.2	3
124	Statistical analysis on nanostructure–mechanical property relations for xSiO2–(1-x)Al2O3 aluminosilicate glass with voids and inclusions. Ceramics International, 2021, 47, 29584-29597.	4.8	3
125	Flexoelectricity in non-oriented liquids. Journal Physics D: Applied Physics, 2021, 54, 06LT01.	2.8	3
126	Mechanical design of uniform strain-gradient schemes for transverse and longitudinal flexoelectricity. International Journal of Solids and Structures, 2022, 238, 111414.	2.7	3

#	Article	IF	CITATIONS
127	Electrochemomechanical Modeling and In Situ Measurement of Transition Metal Dichalcogenides-Based Electrochemical Actuators. Journal of the Electrochemical Society, 2020, 167, 167514.	2.9	2
128	An enhanced flexoelectric dielectric elastomer actuator with stretchable electret. Smart Materials and Structures, 2021, 30, 125004.	3.5	2
129	Transient Continuum Mechanics and Chemomechanics. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	2
130	Strain-modulated initial oxidation of Al(1-)Ni alloy surface. Applied Surface Science, 2022, 592, 153294.	6.1	2
131	Measuring the Gradient of Sound Pressure Directly Via Flexoelectricity. Physical Review Applied, 2022, 17, .	3.8	2
132	Analytical Solution for 2D Non-Fickian Transient Mass Transfer With Arbitrary Initial and Periodic Boundary Conditions. Journal of Heat Transfer, 2013, 135, .	2.1	1
133	Analysis of flexochemical effect and its application in scanning probe microscopy. Journal Physics D: Applied Physics, 0, , .	2.8	1
134	Temperature effect on dynamic compression performance of random fibrous composites in the TTT and IP directions. Journal of the European Ceramic Society, 2022, 42, 2400-2407.	5.7	0