
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6814964/publications.pdf Version: 2024-02-01

CONC-HUI WANC

#	Article	IF	CITATIONS
1	Creep of clayey soil induced by elevated pore-water pressure: Implication for forecasting the time of failure of rainfall-triggered landslides. Engineering Geology, 2022, 296, 106461.	2.9	10
2	Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria. Engineering Geology, 2022, 302, 106619.	2.9	21
3	Mechanism and future risk of slope instability induced by extreme rainfall event in Izu Oshima Island, Japan. Natural Hazards, 2021, 105, 501-530.	1.6	8
4	The debris avalanche in Donghekou area triggered by the 2008 Wenchuan (M8.0) earthquake: Features and possible transportation mechanisms. Engineering Geology, 2021, 280, 105922.	2.9	7
5	Recent technological and methodological advances for the investigation of landslide dams. Earth-Science Reviews, 2021, 218, 103646.	4.0	42
6	Effects of clay content on the shear behaviors of sliding zone soil originating from muddy interlayers in the Three Gorges Reservoir, China. Engineering Geology, 2021, 294, 106380.	2.9	18
7	The Acoustic Emission Characteristics and Shear Behaviour During Granular Shearing. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 385-390.	0.3	0
8	Liquefaction within a bedding fault: Understanding the initiation and movement of the Daguangbao landslide triggered by the 2008 Wenchuan Earthquake (MsÂ=Â8.0). Engineering Geology, 2021, 295, 106455.	2.9	95
9	Experimental investigation of a catastrophic landslide in northern Pakistan. Landslides, 2019, 16, 2017-2032.	2.7	14
10	Volcaniclastic debris avalanche on Motomachi area of Izu-Oshima, Japan, triggered by severe storm: Phenomenon and mechanisms. Engineering Geology, 2019, 251, 24-36.	2.9	10
11	A landslide induced by the 2016 Kumamoto Earthquake adjacent to tectonic displacement - Generation mechanism and long-term monitoring. Engineering Geology, 2019, 248, 80-88.	2.9	18
12	Amplification of seismic response of a large deep-seated landslide in Tokushima, Japan. Engineering Geology, 2019, 249, 218-234.	2.9	23
13	Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling. Geophysical Research Letters, 2018, 45, 1888-1896.	1.5	57
14	Commentary on "Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall―by CUI Yi-fei, ZHOU Xiao-jun and GUO Chao-xu. Journal of Mountain Science, 2018, 15, 918-920.	0.8	1
15	Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province. Engineering Geology, 2018, 236, 89-96.	2.9	199
16	Effect of irrigation-induced densification on the post-failure behavior of loess flowslides occurring on the Heifangtai area, Gansu, China. Engineering Geology, 2018, 236, 111-118.	2.9	106
17	Stabilization of Loess Using Nano-SiO2. Materials, 2018, 11, 1014.	1.3	43
18	Influence of initial dry density and water content on the soil–water characteristic curve and suction stress of a reconstituted loess soil. Bulletin of Engineering Geology and the Environment, 2017, 76, 1085-1095.	1.6	59

#	Article	IF	CITATIONS
19	Experimental case study of seismically induced loess liquefaction and landslide. Engineering Geology, 2017, 223, 23-30.	2.9	57
20	Acoustic emission signature of mechanical failure: Insights from ringâ€shear friction experiments on granular materials. Geophysical Research Letters, 2017, 44, 2782-2791.	1.5	18
21	Shear wave velocity imaging of landslide debris deposited on an erodible bed and possible movement mechanism for a loess landslide in Jingyang, Xi'an, China. Landslides, 2017, 14, 1503-1512.	2.7	79
22	Fast shear behavior of granular materials in ring-shear tests and implications for rapid landslides. Acta Geotechnica, 2017, 12, 645-655.	2.9	32
23	Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shearâ€Thinning and Thixotropic Mechanism. Geophysical Research Letters, 2017, 44, 11,040.	1.5	26
24	Prediction of rainfallâ€induced shallow landslides in the Loess Plateau, Yan'an, China, using the TRIGRS model. Earth Surface Processes and Landforms, 2017, 42, 915-927.	1.2	79
25	On the initiation and movement mechanisms of a catastrophic landslide triggered by the 2008 Wenchuan (Ms 8.0) earthquake in the epicenter area. Landslides, 2017, 14, 805-819.	2.7	32
26	Layered internal structure and breaching risk assessment of the Higashi-Takezawa landslide dam in Niigata, Japan. Geomorphology, 2016, 267, 48-58.	1.1	28
27	Effect of particle size and shear speed on frictional instability in sheared granular materials during large shear displacement. Engineering Geology, 2016, 210, 93-102.	2.9	25
28	Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China. Canadian Geotechnical Journal, 2015, 52, 971-981.	1.4	55
29	The Classification of Damming Landslides and Landslide Dams Induced by the Wenchuan Earthquake. , 2015, , 1143-1147.		5
30	Residual shear strength variability as a primary control on movement of landslides reactivated by earthquakeâ€induced ground motion: Implications for coastal Oregon, U.S Journal of Geophysical Research F: Earth Surface, 2014, 119, 1617-1635.	1.0	40
31	Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A case study. Engineering Geology, 2014, 174, 36-45.	2.9	106
32	Effect of pore-water chemistry on undrained shear behaviour of saturated loess. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 201-210.	0.8	42
33	Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Engineering Geology, 2014, 171, 59-69.	2.9	114
34	A large landslide triggered by the 2008 Wenchuan (M8.0) earthquake in Donghekou area: Phenomena and mechanisms. Engineering Geology, 2014, 182, 148-157.	2.9	64
35	Some fluidized landslides triggered by the 2011 Tohoku Earthquake (Mw 9.0), Japan. Geomorphology, 2014, 208, 11-21.	1.1	27
36	Landslide Amplification by Liquefaction of Runoutâ€Path Material after the 2008 Wenchuan (M 8·0) Earthquake, China. Earth Surface Processes and Landforms, 2013, 38, 265-274.	1.2	41

#	Article	IF	CITATIONS
37	Satellite remote sensing-based detection of the deformation of a reservoir bank slope in Laxiwa Hydropower Station, China. Landslides, 2013, 10, 231-238.	2.7	28
38	Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Engineering Geology, 2013, 155, 69-79.	2.9	172
39	The internal structure of a rockslide dam induced by the 2008 Wenchuan (Mw7.9) earthquake, China. Engineering Geology, 2013, 156, 28-36.	2.9	37
40	On the Initiation and Movement of Hanokidaira Landslide from the 2011 Tohoku Earthquake, Japan. , 2013, , 369-377.		4
41	Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China. Geomorphology, 2012, 171-172, 58-68.	1.1	83
42	Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 2011, 133, 152-167.	1.1	502
43	Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Engineering Geology, 2011, 117, 114-120.	2.9	140
44	Shearâ€rateâ€dependent strength control on the dynamics of rainfallâ€triggered landslides, Tokushima Prefecture, Japan. Earth Surface Processes and Landforms, 2010, 35, 407-416.	1.2	41
45	Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology, 2010, 118, 225-238.	1.1	302
46	Seismic loading impacts on excess poreâ€water pressure maintain landslide triggered flowslides. Earth Surface Processes and Landforms, 2009, 34, 232-241.	1.2	39
47	A rapid loess flowslide triggered by irrigation in China. Landslides, 2009, 6, 55-60.	2.7	133
48	Landslide movement in southwest Colorado triggered by atmospheric tides. Nature Geoscience, 2009, 2, 863-866.	5.4	135
49	Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides, 2008, 5, 321-329.	2.7	108
50	Experimental Study on the Shearing Behavior of Saturated Silty Soils Based on Ring-Shear Tests. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 319-333.	1.5	56
51	Sliding mechanism of the 2004 Mid-Niigata Prefecture Earthquake-triggered-rapid landslides occurred within the past landslide masses. Journal of the Japan Landslide Society, 2007, 44, 71-78.	0.1	5
52	Study of the 1920 Haiyuan earthquake-induced landslides in loess (China). Engineering Geology, 2007, 94, 76-88.	2.9	128
53	Undrained Stress-controlled Dynamic-loading Ring-shear Test to Simulate Initiation and Post-failure Motion of Landslides. , 2007, , 81-98.		2
54	Observation of shear zone development in ring-shear apparatus with a transparent shear box. Landslides, 2006, 3, 239-251.	2.7	61

#	Article	IF	CITATIONS
55	Rainstorm-induced landslides at Kisawa village, Tokushima Prefecture, Japan, August 2004. Landslides, 2005, 2, 235-242.	2.7	12
56	Shear-Displacement-Amplitude Dependent Pore-Pressure Generation in Undrained Cyclic Loading Ring Shear Tests: An Energy Approach. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2005, 131, 750-761.	1.5	21
57	Seismic Behavior of Saturated Sandy Soils: Case Study for the May 2003 Tsukidate Landslide in Japan. , 2005, , 157-164.		2
58	Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides, 2004, 1, 7-19.	2.7	239
59	Earthquake-induced rapid long-traveling flow phenomenon: May 2003 Tsukidate landslide in Japan. Landslides, 2004, 1, 151.	2.7	28
60	Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides, 2004, 1, 221-235.	2.7	100
61	Preliminary investigation report on the landslide hazards on the upstream basin of Naka River, Tokushima Prefecture, triggered by the Typhoon No.10, 2004. Journal of the Japan Landslide Society, 2004, 41, 303-305.	0.1	1
62	Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 2003, 69, 109-125.	2.9	332
63	Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm. Engineering Geology, 2003, 69, 309-330.	2.9	101
64	Post-failure mobility of saturated sands in undrained load-controlled ring shear tests. Canadian Geotechnical Journal, 2002, 39, 821-837.	1.4	83
65	Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan. Engineering Geology, 2002, 63, 169-185.	2.9	112