
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6814518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. Journal of Hazardous Materials, 2014, 270, 1-10.	6.5	208
2	Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sensors and Actuators B: Chemical, 2010, 146, 206-212.	4.0	203
3	Preparation of porous flower-like CuO/ZnO nanostructures and analysis of their gas-sensing property. Journal of Alloys and Compounds, 2013, 575, 115-122.	2.8	125
4	Synthesis of the porous NiO/SnO2 microspheres and microcubes and their enhanced formaldehyde gas sensing performance. Sensors and Actuators B: Chemical, 2017, 241, 298-307.	4.0	113
5	Effective hydrogen gas sensor based on NiO@rGO nanocomposite. Sensors and Actuators B: Chemical, 2018, 266, 506-513.	4.0	111
6	Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. Journal of Materials Chemistry, 2011, 21, 13283.	6.7	107
7	Porous flower-like SnO2 nanostructures as sensitive gas sensors for volatile organic compounds detection. Sensors and Actuators B: Chemical, 2012, 174, 31-38.	4.0	104
8	Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature. Journal of Materials Chemistry, 2010, 20, 2457.	6.7	84
9	Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties. Journal of Saudi Chemical Society, 2015, 19, 479-484.	2.4	68
10	Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5977-5994.	5.2	67
11	Selective detection of picric acid using functionalized reduced graphene oxide sensor device. Sensors and Actuators B: Chemical, 2014, 196, 567-573.	4.0	56
12	Large-scale selective preparation of porous SnO2 3D architectures and their gas-sensing property. CrystEngComm, 2012, 14, 3283.	1.3	53
13	In situ growth of Au nanoparticles on the surfaces of Cu2O nanocubes for chemical sensors with enhanced performance. RSC Advances, 2012, 2, 7647.	1.7	52
14	A facile synthesis of sandwich-structured SnS2@reduced graphene oxide with high performance for lithium-ion battery anode. Journal of Alloys and Compounds, 2018, 765, 1061-1071.	2.8	48
15	Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes. Journal of Power Sources, 2018, 378, 677-684.	4.0	47
16	Preparation of hollow porous Co-doped SnO2 microcubes and their enhanced gas sensing property. CrystEngComm, 2013, 15, 7515.	1.3	46
17	A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. Journal of Alloys and Compounds, 2018, 741, 223-230.	2.8	41
18	Preparation of three-dimensional nanosheet-based molybdenum disulfide nanotubes as anode materials for lithium storage. Journal of Materials Chemistry A, 2016, 4, 17000-17008.	5.2	40

#	Article	IF	CITATIONS
19	Template synthesis of Cu2â^'xSe nanoboxes and their gas sensing properties. CrystEngComm, 2012, 14, 3528.	1.3	39
20	Sucrose derived microporous–mesoporous carbon for advanced lithium–sulfur batteries. Ceramics International, 2021, 47, 899-906.	2.3	35
21	Synthesis of hierarchical α-Fe 2 O 3 nanotubes for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2017, 714, 6-12.	2.8	34
22	Co9S8@MoS2 core-shell nanostructure anchored on reduced graphene oxide with improved electrochemical performance for lithium-ion batteries. Applied Surface Science, 2019, 473, 918-927.	3.1	34
23	Synthesis of tin(IV) oxide@reduced graphene oxide nanocomposites with superior electrochemical behaviors for lithium-ions batteries. Electrochimica Acta, 2018, 290, 72-81.	2.6	27
24	Construction of polypyrrole coated hollow cobalt manganate nanocages as an effective sulfur host for lithium-sulfur batteries. Ceramics International, 2020, 46, 18224-18233.	2.3	26
25	Size-controlled synthesis and electrochemical performance of porous Fe ₂ O ₃ /SnO ₂ nanocubes as an anode material for lithium ion batteries. CrystEngComm, 2017, 19, 708-715.	1.3	25
26	Facile synthesis of porous TiO2 nanospheres and their photocatalytic properties. Superlattices and Microstructures, 2015, 81, 16-25.	1.4	22
27	Preparation of manganese monoxide@reduced graphene oxide nanocomposites with superior electrochemical performances for lithium-ion batteries. Ceramics International, 2019, 45, 3425-3434.	2.3	22
28	Fabrication of hollow SnO2/ZnS@C nanocubes as anode materials for advanced lithium-ion battery. Journal of Alloys and Compounds, 2021, 878, 160375.	2.8	22
29	Self-assembly of single-crystalline α-Fe2O3nanoplates into columnar superstructures: controllable synthesis, growth mechanism, and properties. CrystEngComm, 2014, 16, 6873.	1.3	20
30	Freeze drying-assisted synthesis of Pt@reduced graphene oxide nanocomposites as excellent hydrogen sensor. Journal of Physics and Chemistry of Solids, 2018, 116, 324-330.	1.9	19
31	A facile in‒situ synthesis of ZIF‑8 nanoparticles anchored on reduced graphene oxide as a sulfur host for Li‑S batteries. Materials Research Bulletin, 2021, 133, 111061.	2.7	19
32	A facile synthesis of CuS@reduced graphene oxide nanocomposite and its energy storage property. Materials Chemistry and Physics, 2018, 217, 102-110.	2.0	17
33	Preparation of zinc sulfide@reduced graphene oxide nanocomposites with enhanced energy storage performance. Journal of Physics and Chemistry of Solids, 2019, 134, 43-51.	1.9	16
34	Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries. Applied Surface Science, 2021, 568, 150969.	3.1	16
35	Synthesis of porous-carbon@reduced graphene oxide with superior electrochemical behaviors for lithium-sulfur batteries. Journal of Alloys and Compounds, 2021, 851, 156832.	2.8	15
36	Nitrogen, phosphorus co-doped porous carbon originated from egg white for advanced lithium-sulfur battery. Journal of Electroanalytical Chemistry, 2021, 894, 115362.	1.9	15

#	Article	IF	CITATIONS
37	Self-sacrificing template method to controllable synthesize hollow SnO2@C nanoboxes for lithium-ion battery anode. Journal of Electroanalytical Chemistry, 2021, 898, 115653.	1.9	13
38	General approach for preparing sandwich-structured metal sulfide@reduced graphene oxide as highly reversible Li-ion battery anode. Materials Research Letters, 2018, 6, 307-313.	4.1	12
39	Fabrication of polypyrrole coated cobalt manganate porous nanocubes by a facile template precipitation and annealing method for lithium–sulfur batteries. Journal of Alloys and Compounds, 2021, 885, 161350.	2.8	12
40	Preparation of cobalt sulfide@reduced graphene oxide nanocomposites with outstanding electrochemical behavior for lithium-ion batteries. RSC Advances, 2020, 10, 13543-13551.	1.7	11
41	Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property. Frontiers of Optoelectronics, 2012, 5, 429-434.	1.9	10
42	A facile template-free approach for fabrication of flower-like CdS: the evolutionary process of the structure and the performance of photocatalytic activity. CrystEngComm, 2016, 18, 4681-4687.	1.3	10
43	Ni-encapsulated TiO2 nanotube array prepared using atomic layer deposition as a high-performance Li-ion battery anode. Materials Letters, 2018, 219, 12-15.	1.3	10
44	Hydrogel assisted synthesis of Li3V2(PO4)3 composite as high energy density and low-temperature stable secondary battery cathode. Journal of Alloys and Compounds, 2018, 739, 837-847.	2.8	10
45	Synthesis of hierarchical molybdenum disulfide microplates consisting of numerous crosslinked nanosheets for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 781, 174-185.	2.8	10
46	Nanoneedle-assembled hollow α-Fe2O3 microflowers as Li-ion battery anode with high capacity and good temperature tolerance. Journal of Electroanalytical Chemistry, 2021, 898, 115625.	1.9	10
47	An all-in-one Sn–Co alloy as a binder-free anode for high-capacity batteries and its dynamic lithiation in situ. Chemical Communications, 2019, 55, 529-532.	2.2	9
48	Hierarchical porous carbon doped with high content of nitrogen as sulfur host for high performance lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2020, 878, 114593.	1.9	9
49	Synthesis of Au nanoparticle-modified porous TiO2 nanospheres for detection of toxic volatile organic vapors. Journal of Alloys and Compounds, 2022, 919, 165843.	2.8	9
50	Preparation of cross-linked porous SnO2 nanosheets using three-dimensional reduced graphene oxide as a template and their gas sensing property. Journal of Alloys and Compounds, 2022, 910, 164763.	2.8	8
51	A novel tin hybrid nano-composite with double nets of carbon matrixes as a stable anode in lithium ion batteries. Chemical Communications, 2017, 53, 13125-13128.	2.2	7
52	Synthesis of a Novel Ce-bpdc for the Effective Removal of Fluoride from Aqueous Solution. Advances in Condensed Matter Physics, 2017, 2017, 1-8.	0.4	6
53	Preparation of reduced graphene oxide@nickel oxide nanosheets composites with enhanced lithium-ion storage performance. Materials Chemistry and Physics, 2019, 232, 229-239.	2.0	6
54	Novel method for preparation of metal-sulfide@reduced-graphene-oxide with high energy storage performance. Materials Chemistry and Physics, 2020, 240, 122132.	2.0	6

#	Article	IF	CITATIONS
55	Titanium nitride nanocrystals anchored evenly on interconnected carbon nanosheets with effective chemisorption and catalytic effects towards polysulfides for long-life lithiumâ^'sulfur batteries. Electrochimica Acta, 2021, 395, 139208.	2.6	6
56	Synthesis of porous TiO2 nanowires and their photocatalytic properties. Frontiers of Optoelectronics, 2017, 10, 395-401.	1.9	5
57	One-dimensional hierarchical structured MoS2with an ordered stacking of nanosheets: a facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19, 218-223.	1.3	5
58	Rice paste derived microporous carbon for advanced lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2021, 880, 114900.	1.9	5
59	Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance. Frontiers of Materials Science, 2022, 16, 1.	1.1	5
60	N-doped carbon coated SnO2 nanospheres as Li-ion battery anode with high capacity and good cycling stability. Journal of Electroanalytical Chemistry, 2021, 899, 115694.	1.9	3
61	Removal of cobalt ions from aqueous solution by Ag/Fe bimetallic nanoparticles. Desalination and Water Treatment, 2015, 56, 2127-2134.	1.0	2
62	A strategy of using temporary space-holders to increase the capacity for Li S batteries. Journal of Electroanalytical Chemistry, 2021, 882, 115008.	1.9	2
63	Effect of microwave sintering on KNN-based lead free ceramics. Ferroelectrics, Letters Section, 2022, 49, 1-5.	0.4	1