## Yuji Ikeno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6814315/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thioredoxin – a magic bullet or a double-edged sword for mammalian aging?. Aging Pathobiology and<br>Therapeutics, 2021, 3, 17-19.                                                                          | 0.3  | 2         |
| 2  | San Antonio Nathan Shock Center: your one-stop shop for aging research. GeroScience, 2021, 43, 2105-2118.                                                                                                   | 2.1  | 4         |
| 3  | Growth hormone receptor gene disruption in matureâ€adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell, 2021, 20, e13506.                                                  | 3.0  | 28        |
| 4  | Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice Aging Pathobiology and Therapeutics, 2020, 2, 20-31.                               | 0.3  | 30        |
| 5  | Development of a Geropathology Grading Platform for nonhuman primates. Aging Pathobiology and Therapeutics, 2020, 2, 16-19.                                                                                 | 0.3  | 4         |
| 6  | Thioredoxin down-regulation in the cytosol in thioredoxin 2 transgenic mice did not have beneficial effects to extend lifespan in male C57BL/6 mice. Aging Pathobiology and Therapeutics, 2020, 2, 203-209. | 0.3  | 8         |
| 7  | Thioredoxin and aging: What have we learned from the survival studies?. Aging Pathobiology and Therapeutics, 2020, 2, 126-133.                                                                              | 0.3  | 4         |
| 8  | The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience, 2019, 41, 759-774.                                                                                     | 2.1  | 29        |
| 9  | Aging Induces an NIrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic<br>Homeostasis. Cell Metabolism, 2019, 30, 1024-1039.e6.                                                  | 7.2  | 125       |
| 10 | Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metabolism, 2019, 29, 1061-1077.e8.                                                                                       | 7.2  | 293       |
| 11 | Continuous overexpression of thioredoxin 1 enhances cancer development and does not extend<br>maximum lifespan in male C57BL/6 mice. Pathobiology of Aging & Age Related Diseases, 2018, 8, 1533754.        | 1.1  | 15        |
| 12 | Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice. GeroScience, 2018, 40, 453-468.                                 | 2.1  | 18        |
| 13 | Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nature<br>Communications, 2018, 9, 2394.                                                                         | 5.8  | 106       |
| 14 | Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.                                                                                                | 15.2 | 1,384     |
| 15 | IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and<br>lifespan. GeroScience, 2017, 39, 129-145.                                                            | 2.1  | 111       |
| 16 | A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1â^' mice is correlated to increased cellular senescence. Redox Biology, 2017, 11, 30-37.                                   | 3.9  | 138       |
| 17 | Liver specific expression of Cu/ZnSOD extends the lifespan of Sod1 null mice. Mechanisms of Ageing and Development, 2016, 154, 1-8.                                                                         | 2.2  | 18        |
| 18 | Significant life extension by ten percent dietary restriction. Annals of the New York Academy of Sciences, 2016, 1363, 11-17.                                                                               | 1.8  | 17        |

Υυјι Ικένο

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms. Journal of<br>Bone and Mineral Research, 2016, 31, 443-454.                                                                              | 3.1  | 41        |
| 20 | Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metabolism, 2016, 23, 1093-1112.                                                                                                                    | 7.2  | 360       |
| 21 | The Geropathology Research Network: An Interdisciplinary Approach for Integrating Pathology Into<br>Research on Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016,<br>71, 431-434.         | 1.7  | 16        |
| 22 | Rapamycin Increases Mortality in <i>db/db</i> Mice, a Mouse Model of Type 2 Diabetes. Journals of<br>Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 850-857.                                          | 1.7  | 57        |
| 23 | Measures of Healthspan as Indices of Aging in Mice—A Recommendation. Journals of Gerontology -<br>Series A Biological Sciences and Medical Sciences, 2016, 71, 427-430.                                                           | 1.7  | 76        |
| 24 | Altered metabolism and resistance to obesity in long-lived mice producing reduced levels of IGF-I.<br>American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E545-E553.                                        | 1.8  | 14        |
| 25 | Reduced Expression of MYC Increases Longevity and Enhances Healthspan. Cell, 2015, 160, 477-488.                                                                                                                                  | 13.5 | 238       |
| 26 | The paradoxical role of thioredoxin on oxidative stress and aging. Archives of Biochemistry and Biophysics, 2015, 576, 32-38.                                                                                                     | 1.4  | 54        |
| 27 | The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14,<br>644-658.                                                                                                                   | 3.0  | 1,534     |
| 28 | MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 2015, 17, 1049-1061.                                                                             | 4.6  | 802       |
| 29 | New insights and current concepts of the oxidative stress theory of aging. Archives of Biochemistry and Biophysics, 2015, 576, 1.                                                                                                 | 1.4  | 4         |
| 30 | Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health<br>benefits seen in global GHRâ^'/â^' mice. Aging, 2015, 7, 500-512.                                                                | 1.4  | 46        |
| 31 | Mice Producing Reduced Levels of Insulin-Like Growth Factor Type 1 Display an Increase in Maximum,<br>but not Mean, Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences,<br>2014, 69, 410-419. | 1.7  | 40        |
| 32 | Dietary restriction attenuates the accelerated aging phenotype of Sod1â^'/â^' mice. Free Radical Biology and Medicine, 2013, 60, 300-306.                                                                                         | 1.3  | 32        |
| 33 | Do Ames dwarf and calorie-restricted mice share common effects on age-related pathology?.<br>Pathobiology of Aging & Age Related Diseases, 2013, 3, 20833.                                                                        | 1.1  | 18        |
| 34 | Pathology is a critical aspect of preclinical aging studies. Pathobiology of Aging & Age Related Diseases, 2013, 3, 22451.                                                                                                        | 1.1  | 13        |
| 35 | Rapamycin extends life span of Rb1+/â^' mice by inhibiting neuroendocrine tumors. Aging, 2013, 5, 100-110.                                                                                                                        | 1.4  | 80        |
| 36 | Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. Age, 2012, 34, 1225-1237.                                                                                        | 3.0  | 12        |

Υυјι Ικένο

| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thioredoxin, oxidative stress, cancer and aging. Longevity & Healthspan, 2012, 1, 4.                                                                                                                                                                                                     | 6.7 | 16        |
| 38 | Reduction of glucose intolerance with high fat feeding is associated with anti-inflammatory effects of thioredoxin 1 overexpression in mice. Pathobiology of Aging & Age Related Diseases, 2012, 2, 17101.                                                                               | 1.1 | 11        |
| 39 | Does Reduced IGF-1R Signaling in Igf1r+/â^ Mice Alter Aging?. PLoS ONE, 2011, 6, e26891.                                                                                                                                                                                                 | 1.1 | 130       |
| 40 | The anti-tumor effects of calorie restriction are correlated with reduced oxidative stress in ENU-induced gliomas. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7189.                                                                                                          | 1.1 | 14        |
| 41 | Thioredoxin 1 Overexpression Extends Mainly the Earlier Part of Life Span in Mice. Journals of<br>Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 1286-1299.                                                                                                 | 1.7 | 71        |
| 42 | Differential effects of enalapril and losartan on body composition and indices of muscle quality in aged male Fischer 344 × Brown Norway rats. Age, 2011, 33, 167-183.                                                                                                                   | 3.0 | 43        |
| 43 | Reduced Incidence and Delayed Occurrence of Fatal Neoplastic Diseases in Growth Hormone<br>Receptor/Binding Protein Knockout Mice. Journals of Gerontology - Series A Biological Sciences and<br>Medical Sciences, 2009, 64A, 522-529.                                                   | 1.7 | 206       |
| 44 | Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased<br>Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity. Journals of<br>Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1212-1220. | 1.7 | 172       |
| 45 | Lifespan extension in genetically modified mice. Aging Cell, 2009, 8, 346-352.                                                                                                                                                                                                           | 3.0 | 100       |
| 46 | ls the oxidative stress theory of aging dead?. Biochimica Et Biophysica Acta - General Subjects, 2009,<br>1790, 1005-1014.                                                                                                                                                               | 1.1 | 502       |
| 47 | Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radical Biology and Medicine, 2008, 44, 882-892.                                                                                                                | 1.3 | 100       |
| 48 | Reduction in Glutathione Peroxidase 4 Increases Life Span Through Increased Sensitivity to Apoptosis.<br>Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 932-942.                                                                                 | 1.7 | 149       |
| 49 | Plasma Glucose and the Action of Calorie Restriction on Aging. Journals of Gerontology - Series A<br>Biological Sciences and Medical Sciences, 2007, 62, 1059-1070.                                                                                                                      | 1.7 | 39        |
| 50 | Do long-lived mutant and calorie-restricted mice share common anti-aging mechanisms?—a<br>pathological point of view. Age, 2006, 28, 163-171.                                                                                                                                            | 3.0 | 17        |
| 51 | Adult-Onset Growth Hormone and Insulin-Like Growth Factor I Deficiency Reduces Neoplastic Disease,<br>Modifies Age-Related Pathology, and Increases Life Span. Endocrinology, 2005, 146, 2920-2932.                                                                                      | 1.4 | 143       |
| 52 | Housing Density Does Not Influence the Longevity Effect of Calorie Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 1510-1517.                                                                                                        | 1.7 | 71        |
| 53 | Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiological Genomics, 2003, 16, 29-37.                                                                                                             | 1.0 | 654       |
| 54 | Delayed Occurrence of Fatal Neoplastic Diseases in Ames Dwarf Mice: Correlation to Extended<br>Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2003, 58,<br>B291-B296.                                                                           | 1.7 | 265       |

Υυјι Ικένο

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Exploring the Mechanism of Aging Using Rodent Models. , 2003, , 221-246.                                                                                                   |     | 0         |
| 56 | Health Span and Life Span in Transgenic Mice with Modulated DNA Repair. Annals of the New York<br>Academy of Sciences, 2001, 928, 132-140.                                 | 1.8 | 20        |
| 57 | GFAP expression in the subcutaneous tumors of immature glial cell line (HITS glioma) derived from<br>ENU-induced rat glioma. Journal of Neuro-Oncology, 1993, 17, 191-204. | 1.4 | 3         |