Rinshi S Kasai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6814062/publications.pdf

Version: 2024-02-01

38 4,302 papers citations

21
h-index

27 g-index

50 all docs 50 docs citations 50 times ranked 4864 citing authors

#	Article	IF	CITATIONS
1	Paradigm Shift of the Plasma Membrane Concept from the Two-Dimensional Continuum Fluid to the Partitioned Fluid: High-Speed Single-Molecule Tracking of Membrane Molecules. Annual Review of Biophysics and Biomolecular Structure, 2005, 34, 351-378.	18.3	1,010
2	Dynamic Organizing Principles of the Plasma Membrane that Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson's Fluid-Mosaic Model. Annual Review of Cell and Developmental Biology, 2012, 28, 215-250.	4.0	394
3	Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. Journal of Cell Biology, 2006, 174, 851-862.	2.3	343
4	Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nature Cell Biology, 2003, 5, 626-632.	4.6	324
5	Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. Journal of Cell Biology, 2011, 192, 463-480.	2.3	310
6	Hierarchical mesoscale domain organization of the plasma membrane. Trends in Biochemical Sciences, 2011, 36, 604-615.	3.7	299
7	Tracking single molecules at work in living cells. Nature Chemical Biology, 2014, 10, 524-532.	3.9	290
8	Transient GPI-anchored protein homodimers are units for raft organization and function. Nature Chemical Biology, 2012, 8, 774-783.	3.9	234
9	Fluorescence Imaging for Monitoring the Colocalization of Two Single Molecules in Living Cells. Biophysical Journal, 2005, 88, 2126-2136.	0.2	154
10	Single-molecule imaging revealed dynamic GPCR dimerization. Current Opinion in Cell Biology, 2014, 27, 78-86.	2.6	132
11	Membrane mechanisms for signal transduction: The coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Seminars in Cell and Developmental Biology, 2012, 23, 126-144.	2.3	127
12	Defining raft domains in the plasma membrane. Traffic, 2020, 21, 106-137.	1.3	94
13	Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nature Chemical Biology, 2018, 14, 497-506.	3.9	93
14	ABCA1 dimer–monomer interconversion during HDL generation revealed by single-molecule imaging. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5034-5039.	3.3	89
15	Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes. Traffic, 2014, 15, 583-612.	1.3	77
16	The Class-A GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized by Agonists: Detection by Single-Molecule Tracking. Cell Biochemistry and Biophysics, 2018, 76, 29-37.	0.9	67
17	Raf Inhibitors Target Ras Spatiotemporal Dynamics. Current Biology, 2012, 22, 945-955.	1.8	65
18	Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. Journal of Cell Biology, 2013, 202, 967-983.	2.3	48

#	Article	IF	CITATIONS
19	A synthetic ion channel with anisotropic ligand response. Nature Communications, 2020, 11, 2924.	5.8	36
20	High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. Journal of Cell Biology, 2020, 219, .	2.3	35
21	A novel sphingomyelin/cholesterol domainâ€specific probe reveals the dynamics of the membrane domains during virus release and in Niemannâ€Pick type C. FASEB Journal, 2017, 31, 1301-1322.	0.2	34
22	Single-Molecule Imaging of Receptor–Receptor Interactions. Methods in Cell Biology, 2013, 117, 373-390.	0.5	20
23	Synergetic Roles of Formyl Peptide Receptor 1 Oligomerization in Ligand-Induced Signal Transduction. ACS Chemical Biology, 2020, 15, 2577-2587.	1.6	11
24	Dynamic Meso-Scale Anchorage of GPI-Anchored Receptors in the Plasma Membrane: Prion Protein vs. Thy1. Cell Biochemistry and Biophysics, 2017, 75, 399-412.	0.9	5
25	Transient Hetero-Dimerization of Opioid Receptors (GPCRS) Revealed by Single-Molecule Tracking. Biophysical Journal, 2018, 114, 202a.	0.2	1
26	Functional Reconstitution of Dopamine D2 Receptor into a Supported Model Membrane in a Nanometric Confinement. Advanced Biology, 2021, 5, e2100636.	1.4	1
27	3P206 Single-molecule tracking revealed the complete kinetics of a GPCR monomer-dimer dynamic equilibrium (Cell biological problems-adhesion, mobility, cytoskeleton, signaling, and membrane.) Tj ETQq $1\ 1\ 0.78$	34 3 01 4 rgB	T / O verlock 1
28	S01H1 Direct determination of monomer-dimer dynamic equilibrium of a GPCR by a single fluorescent-molecule tracking(Systems Biology of Intracellular Signaling as Studied by) Tj ETQq0 0 0 rgBT /Overlo	oc ko.100 Tf 5	50 6 77 Td (Sir
29	2S2-2 Three dimensional interplay of the membrane skeleton with the plasma membrane as visualized by freeze-etch electron tomography(2S2 Interactions between the cell membrane and the actin) Tj ETQq1 1 0.7843 Seibutsu Butsuri, 2008, 48, S8.	14 rgBT /0	Overlock 10 T
30	1TA3-09 First determination of the dimer dissociation constant of GPCR in the living cell membrane by single-molecule imaging(The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S29.	0.0	o
31	2P228 Dimer-monomer equilibrium of a GPCR: direct dimer detection by single-molecule bimolecular fluorescence complementation (SM-BiFC)(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S122-S123.	0.0	o
32	2K1436 Dynamic monomer-dimer equilibrium of a prototypical GPCR, beta2 adrenergic receptor : a single molecule imaging study(Cell biology 2,The 48th Annual Meeting of the Biophysical Society of) Tj ETQq0 0	/O\T @l gon 0	venbock 10 Tf S
33	3PT172 Dynamics of normal prion protein, a raft-associated GPI-anchored molecule, in the live neuronal plasma membrane(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S170-S171.	0.0	0
34	Dynamic Monomer-Dimer Equilibrium of a Prototypical GPCR, Beta2 Adrenergic Receptor: A Single Molecule Imaging Study. Biophysical Journal, 2012, 102, 239a.	0.2	0
35	Dynamic Regulation of AMPA Receptor and Stargazin Concentration in the Spine in the Time Scale of 0.1 S to Several 100 S; Unraveling by Single-Molecule Tracking. Biophysical Journal, 2019, 116, 305a.	0.2	0
36	1P-191 Dimers of formyl peptide receptor, a GPCR, exist under physiological conditions: a study using single-molecule tracking (The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S51.	0.0	0

RINSHI S KASAI

#	Article	IF	CITATIONS
37	Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. Journal of General Physiology, 2013, 142, 1424OIA31.	0.9	0
38	Reconstitution of Membrane Proteins into a Model Biological Membrane. IEEJ Transactions on Electronics, Information and Systems, 2021, 141, 1340-1343.	0.1	0