JosÉemos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813939/publications.pdf

Version: 2024-02-01

393982 288905 1,955 44 19 40 citations g-index h-index papers 48 48 48 1406 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advances in the neurophysiology of magnocellular neuroendocrine cells. Journal of Neuroendocrinology, 2020, 32, e12826.	1.2	17
2	Voltageâ€induced Ca ²⁺ release by ryanodine receptors causes neuropeptide secretion from nerve terminals. Journal of Neuroendocrinology, 2020, 32, e12840.	1.2	5
3	Neurosecretion: Hypothalamic Somata versus Neurohypophysial Terminals. Masterclass in Neuroendocrinology, 2020, , 17-42.	0.1	O
4	Purinergic receptor types in the hypothalamicâ€neurohypophysial system. Journal of Neuroendocrinology, 2018, 30, e12588.	1.2	4
5	Effects of calcium and sodium on <scp>ATP</scp> â€induced vasopressin release from rat isolated neurohypophysial terminals. Journal of Neuroendocrinology, 2018, 30, e12605.	1.2	6
6	Ethanol Effect on BK Channels is Modulated by Magnesium. Alcoholism: Clinical and Experimental Research, 2015, 39, 1671-1679.	1.4	13
7	μ-Opioid Inhibition of Ca ²⁺ Currents and Secretion in Isolated Terminals of the Neurohypophysis Occurs via Ryanodine-Sensitive Ca ²⁺ Stores. Journal of Neuroscience, 2014, 34, 3733-3742.	1.7	17
8	P2X7 Receptors in Neurohypophysial Terminals: Evidence for their Role in Arginineâ€Vasopressin Secretion. Journal of Cellular Physiology, 2014, 229, 333-342.	2.0	8
9	Functional ryanodine receptors in the membranes of neurohypophysial secretory granules. Journal of General Physiology, 2014, 143, 693-702.	0.9	15
10	Isolated Neurohypophysial Terminals: Model for Depolarization–Secretion Coupling. Neuromethods, 2014, , 191-220.	0.2	1
11	Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium, 2012, 51, 284-292.	1.1	45
12	Adenosine Trisphosphate Appears to Act via Different Receptors in Terminals Versus Somata of the Hypothalamic Neurohypophysial System. Journal of Neuroendocrinology, 2012, 24, 681-689.	1.2	11
13	P2X Purinergic Receptor Knockout Mice Reveal Endogenous ATP Modulation of Both Vasopressin and Oxytocin Release from the Intact Neurohypophysis. Journal of Neuroendocrinology, 2012, 24, 674-680.	1.2	15
14	Voltageâ€dependent κâ€opioid modulation of action potential waveformâ€elicited calcium currents in neurohypophysial terminals. Journal of Cellular Physiology, 2010, 225, 223-232.	2.0	10
15	Ionic conditions modulate stimulus-induced capacitance changes in isolated neurohypophysial terminals of the rat. Journal of Physiology, 2010, 588, 287-300.	1.3	7
16	Individual Calcium Syntillas Do Not Trigger Spontaneous Exocytosis from Nerve Terminals of the Neurohypophysis. Journal of Neuroscience, 2009, 29, 14120-14126.	1.7	13
17	Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals. Journal of Cellular Physiology, 2008, 217, 155-161.	2.0	22
18	Endogenous adenosine inhibits CNS terminal Ca2+ currents and exocytosis. Journal of Cellular Physiology, 2007, 210, 309-314.	2.0	17

#	Article	lF	Citations
19	Identification of the neuropeptide content of individual rat neurohypophysial terminals. Journal of Neuroscience Methods, 2007, 163, 226-234.	1.3	19
20	Syntillas Release Ca2+ at a Site Different from the Microdomain Where Exocytosis Occurs in Mouse Chromaffin Cells. Biophysical Journal, 2006, 90, 2027-2037.	0.2	33
21	Dihydropyridine Receptors and Type 1 Ryanodine Receptors Constitute the Molecular Machinery for Voltage-Induced Ca2+ Release in Nerve Terminals. Journal of Neuroscience, 2006, 26, 7565-7574.	1.7	49
22	Frequency-dependent potentiation of voltage-activated responses only in the intact neurohypophysis of the rat. Pflugers Archiv European Journal of Physiology, 2005, 450, 96-110.	1.3	12
23	ATP elicits inward currents in isolated vasopressinergic neurohypophysial terminals via P2X2 and P2X3 receptors. Pflugers Archiv European Journal of Physiology, 2005, 450, 381-389.	1.3	27
24	Ca2+ Syntillas, Miniature Ca2+ Release Events in Terminals of Hypothalamic Neurons, Are Increased in Frequency by Depolarization in the Absence of Ca2+ Influx. Journal of Neuroscience, 2004, 24, 1226-1235.	1.7	77
25	Loose-patch clamp currents from the hypothalamo-neurohypophysial system of the rat. Pflugers Archiv European Journal of Physiology, 2003, 446, 702-713.	1.3	9
26	Integrated Channel Plasticity Contributes to Alcohol Tolerance in Neurohypophysial Terminals. Molecular Pharmacology, 2002, 62, 135-142.	1.0	49
27	Ca 2+ â€regulated, neurosecretory granule channel involved in release from neurohypophysial terminals. Journal of Physiology, 2002, 539, 409-418.	1.3	16
28	Adenosine inhibition via A 1 receptor of Nâ€type Ca 2+ current and peptide release from isolated neurohypophysial terminals of the rat. Journal of Physiology, 2002, 540, 791-802.	1.3	26
29	Adenosine inhibition via A1 receptor of N-type Ca2+ current and peptide release from isolated neurohypophysial terminals of the rat., 2002, 540, 791.		1
30	Adenosine inhibition via A1 receptor of N-type Ca2+ current and peptide release from isolated neurohypophysial terminals of the rat., 2002, 540, 791.		1
31	Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nature Cell Biology, 2001, 3, 499-502.	4.6	300
32	Tolerance to Acute Ethanol Inhibition of Peptide Hormone Release in the Isolated Neurohypophysis. Alcoholism: Clinical and Experimental Research, 2000, 24, 1077-1083.	1.4	23
33	Excitatoryversusinhibitory modulation by ATP of neurohypophysial terminal activity in the rat. Experimental Physiology, 2000, 85, 67s-74s.	0.9	20
34	Tolerance to Acute Ethanol Inhibition of Peptide Hormone Release in the Isolated Neurohypophysis., 2000, 24, 1077.		2
35	An R-Type Ca ²⁺ Current in Neurohypophysial Terminals Preferentially Regulates Oxytocin Secretion. Journal of Neuroscience, 1999, 19, 9235-9241.	1.7	118
36	Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+channel subtypes in cell bodiesversusnerve endings. Journal of Physiology, 1999, 519, 101-114.	1.3	90

#	Article	IF	CITATIONS
37	ATP-evoked increases in [Ca2+]iand peptide release from rat isolated neurohypophysial terminals via a P2X2purinoceptor. Journal of Physiology, 1998, 511, 89-103.	1.3	79
38	Selective Peptide Antagonist of the Class E Calcium Channel from the Venom of the Tarantula Hysterocrates gigas. Biochemistry, 1998, 37, 15353-15362.	1.2	367
39	Role of Q-type Ca2+Channels in Vasopressin Secretion From Neurohypophysial Terminals of the Rat. Journal of Physiology, 1997, 502, 351-363.	1.3	87
40	Possible Role for Neurosecretory Granule Channel That Resembles Gap Junctions. Annals of the New York Academy of Sciences, 1991, 635, 480-482.	1.8	3
41	Two types of calcium channels coexist in peptide-releasing vertebrate nerve terminals. Neuron, 1989, 2, 1419-1426.	3.8	205
42	Possible role for ionic channels in neurosecretory granules of the rat neurohypophysis. Society of General Physiologists Series, 1989, 44, 333-47.	0.6	2
43	Isolated neurosecretory nerve endings as a tool for studying the mechanism of stimulus-secretion coupling. Bioscience Reports, 1987, 7, 411-426.	1.1	53
44	Single channels and ionic currents in peptidergic nerve terminals. Nature, 1986, 319, 410-412.	13.7	56