List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813852/publications.pdf Version: 2024-02-01

Ηλιμιίι ΡιιλΝ

#	Article	IF	CITATIONS
1	A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Scientific Reports, 2014, 4, 6200.	1.6	998
2	Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia, 2017, 124, 143-150.	3.8	747
3	The influence of strain rate on the microstructure transition of 304 stainless steel. Acta Materialia, 2011, 59, 3697-3709.	3.8	252
4	Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Materialia, 2011, 59, 5544-5557.	3.8	193
5	Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment. Acta Materialia, 2010, 58, 5086-5096.	3.8	144
6	Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations. International Journal of Solids and Structures, 2013, 50, 3562-3569.	1.3	100
7	Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels. Acta Materialia, 2017, 128, 375-390.	3.8	86
8	High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. Journal of Applied Physics, 2016, 119, .	1.1	82
9	Shear and shuffling accomplishing polymorphic fcc γÂ→Âhcp εÂ→Âbct α martensitic phase transformation. Ac Materialia, 2017, 136, 347-354.	cta 3.8	81
10	Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure. Scientific Reports, 2014, 4, 4757.	1.6	77
11	A new method for characterizing the interphase regions of carbon nanotube composites. International Journal of Solids and Structures, 2014, 51, 1781-1791.	1.3	73
12	Crushing of thin-walled spheres and sphere arrays. International Journal of Mechanical Sciences, 2006, 48, 117-133.	3.6	53
13	Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding. Wear, 2013, 304, 43-48.	1.5	48
14	A new constitutive model for shear banding instability in metallic glass. International Journal of Solids and Structures, 2011, 48, 3112-3127.	1.3	35
15	Phase field study of mechanico-electrochemical corrosion. Electrochimica Acta, 2019, 310, 240-255.	2.6	30
16	Investigation of non-local cracking in layered stainless steel with nanostructured interface. Scripta Materialia, 2010, 63, 403-406.	2.6	29
17	Effects of environmental temperature and sliding speed on the tribological behaviour of a Ti-based metallic glass. Intermetallics, 2014, 52, 36-48.	1.8	29
18	The Kinetic diagram of sigma phase and its precipitation hardening effect on 15Cr-2Ni duplex stainless steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 571-578.	2.6	29

#	Article	IF	CITATIONS
19	Multi-temperature indentation creep tests on nanotwinned copper. International Journal of Plasticity, 2018, 104, 68-79.	4.1	28
20	Pore-size tuning and optical performances of nanoporous gold films. Microporous and Mesoporous Materials, 2015, 202, 50-56.	2.2	25
21	Introducing a hierarchical structure for fabrication of a high performance steel. Materials Chemistry and Physics, 2011, 129, 1096-1103.	2.0	23
22	Characterization of plastically graded nanostructured material: Part I. The theories and the inverse algorithm of nanoindentation. Mechanics of Materials, 2010, 42, 559-569.	1.7	21
23	Revealing Structural Relaxation of Optical Glass Through the Temperature Dependence of Young's Modulus. Journal of the American Ceramic Society, 2014, 97, 3475-3482.	1.9	21
24	Size-dependent formation and thermal stability of high-order twins in hierarchical nanotwinned metals. International Journal of Plasticity, 2020, 128, 102685.	4.1	21
25	Prediction of mechanical properties in bimodal nanotwinned metals with a composite structure. Composites Science and Technology, 2016, 123, 222-231.	3.8	19
26	Multi-phase-field modeling of localized corrosion involving galvanic pitting and mechano-electrochemical coupling. Corrosion Science, 2020, 177, 108900.	3.0	19
27	The partition coefficient of alloying elements and its influence on the pitting corrosion resistance of 15Cr-2Ni duplex stainless steel. Corrosion Science, 2018, 139, 13-20.	3.0	18
28	Micro-mechanical model for the effective thermal conductivity of the multi-oriented inclusions reinforced composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 2020, 148, 119167.	2.5	17
29	Local deformation models in analyzing beam-on-beam collisions. International Journal of Mechanical Sciences, 2003, 45, 397-423.	3.6	16
30	Characterization of plastically graded nanostructured material: Part II. The experimental validation in surface nanostructured material. Mechanics of Materials, 2010, 42, 698-708.	1.7	16
31	Influence of Prestress Fields on the Phonon Thermal Conductivity of GaN Nanostructures. Journal of Heat Transfer, 2014, 136, .	1.2	16
32	Effect of warm deformation on microstructure and mechanical properties of a layered and nanostructured 304 stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 34-42.	2.6	15
33	Microstructure Evolution and Mechanical Properties of Austenite Stainless Steel with Gradient Twinned Structure by Surface Mechanical Attrition Treatment. Nanomaterials, 2021, 11, 1624.	1.9	15
34	Surface defect analysis on formed chalcogenide glass Ge_22Se_58As_20 lenses after the molding process. Applied Optics, 2017, 56, 8394.	0.9	14
35	Phase-field modeling of mechano–chemical-coupled stress-corrosion cracking. Electrochimica Acta, 2021, 395, 139196.	2.6	14
36	Effects of misfit dislocation and film-thickness on the residual stresses in epitaxial thin film systems: Experimental analysis and modeling. Journal of Materials Research, 2012, 27, 2737-2745.	1.2	13

#	Article	IF	CITATIONS
37	Investigating relaxation of glassy materials based on natural vibration of beam: A comparative study of borosilicate and chalcogenide glasses. Journal of Non-Crystalline Solids, 2018, 500, 181-190.	1.5	13
38	Modeling of an acoustically actuated artificial micro-swimmer. Bioinspiration and Biomimetics, 2020, 15, 036002.	1.5	13
39	Excellent combination of strength and ductility in 15Cr-2Ni duplex stainless steel based on ultrafine-grained austenite phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 96-103.	2.6	12
40	Mechanical–chemical coupling phase-field modeling for inhomogeneous oxidation of zirconium induced by stress–oxidation interaction. Npj Materials Degradation, 2020, 4, .	2.6	12
41	On the plasticity event in metallic glass. Philosophical Magazine Letters, 2013, 93, 158-165.	0.5	11
42	Simulating Size and Volume Fraction-Dependent Strength and Ductility of Nanotwinned Composite Copper. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	11
43	The unexpectedly small coefficient of restitution of a two-degree-of-freedom mass-spring system and its implications. International Journal of Impact Engineering, 2016, 88, 1-11.	2.4	11
44	Micromechanical modeling for mechanical properties of gradient-nanotwinned metals with a composite microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 180-186.	2.6	11
45	Elasticâ€viscoplasticity modeling of the thermoâ€mechanical behavior of chalcogenide glass for aspheric lens molding. International Journal of Applied Glass Science, 2018, 9, 252-262.	1.0	11
46	Phase field modeling of WidmanstÃ t ten ferrite formation in steel. Journal of Alloys and Compounds, 2018, 769, 620-630.	2.8	11
47	Collision between mass–spring systems. International Journal of Impact Engineering, 2005, 31, 267-288.	2.4	10
48	Microstructure and electrocatalytic performance of nanoporous gold foils decorated by TiO2 coatings. Surface and Coatings Technology, 2016, 286, 113-118.	2.2	10
49	Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys. International Journal of Plasticity, 2021, 137, 102918.	4.1	10
50	Mechano-electrochemical phase field modeling for formation and modulation of dendritic Pattern: Application to uranium recovery from spent nuclear fuel. Materials and Design, 2022, 213, 110322.	3.3	10
51	Review on thin film coatings for precision glass molding. Surfaces and Interfaces, 2022, 30, 101903.	1.5	9
52	Atomic rearrangements in metallic glass: Their nucleation and self-organization. Acta Materialia, 2013, 61, 6050-6060.	3.8	8
53	Effects of surface/interface stress on phonon properties and thermal conductivity in AlN/GaN/AlN heterostructural nanofilms. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
54	Collision between a ring and a beam. International Journal of Mechanical Sciences, 2003, 45, 1751-1780.	3.6	7

#	Article	IF	CITATIONS
55	Deformation mechanism and defect sensitivity of notched free–free beam and cantilever beam under impact. International Journal of Impact Engineering, 2003, 28, 33-63.	2.4	7
56	A <scp>M</scp> onteâ€ <scp>C</scp> arlo Approach for Modeling Glass Transition. Journal of the American Ceramic Society, 2011, 94, 3350-3358.	1.9	7
57	Anomalous sudden drop of temperature-dependent Young's modulus of a plastically deformed duplex stainless steel. Materials and Design, 2019, 181, 108071.	3.3	7
58	Microstructural evaluation of sputtered Ru–Pt multilayer anti-stick coatings for glass molding. Materials and Design, 2022, 220, 110898.	3.3	7
59	Plastic modal approximations in analyzing beam-on-beam collisions. International Journal of Solids and Structures, 2003, 40, 2937-2956.	1.3	6
60	Effects of pre-stress and surface stress on phonon thermal conductivity of rectangular Si nanowires. Applied Physics A: Materials Science and Processing, 2015, 119, 253-263.	1,1	6
61	Phase-field modeling of scale roughening induced by outward growing oxide. Materialia, 2019, 5, 100255.	1.3	6
62	Elastic modulus change and its relation with glass-forming ability and plasticity in bulk metallic glasses. Scripta Materialia, 2019, 161, 62-65.	2.6	6
63	Development of a Micro-beam Method to Investigate the Fatigue Crack Growth Mechanisms of Submicron-scale Cracks. Experimental Mechanics, 2009, 49, 731-742.	1.1	5
64	Variation of crystal quality and residual stresses in epitaxially grown thin film systems induced by ion implantation and annealing. Journal of Materials Research, 2013, 28, 1413-1419.	1.2	5
65	Effect of Chain Morphology and Carbon-Nanotube Additives on the Glass Transition Temperature of Polyethylene. Journal of Nano Research, 2013, 23, 16-23.	0.8	5
66	Non-Contact and Real-Time Measurement of Kolsky Bar with Temporal Speckle Interferometry. Applied Sciences (Switzerland), 2018, 8, 808.	1.3	5
67	Modeling of Random Relaxation Paths of Amorphous Material. Journal of the American Ceramic Society, 2013, 96, 1772-1778.	1.9	4
68	On the mechanical β relaxation in glass and its relation to the double-peak phenomenon in impulse excited vibration at high temperatures. Journal of Non-Crystalline Solids, 2020, 533, 119939.	1.5	4
69	Theoretical Perspectives on Natural and Artificial Micro-swimmers. Acta Mechanica Solida Sinica, 2021, 34, 783-809.	1.0	4
70	Experimental study of collision between a free–free beam and a simply supported beam. International Journal of Impact Engineering, 2005, 32, 416-443.	2.4	3
71	Temperature-dependent residual stresses in a hetero-epitaxial thin film system. Thin Solid Films, 2015, 584, 186-191.	0.8	3
72	Exploiting the non-equilibrium phase transformation in a 15Cr-2Ni-2Al-11Mn resource-saving duplex stainless steel. Materials and Design, 2017, 114, 433-440.	3.3	3

#	Article	IF	CITATIONS
73	Understanding the brittleness of metallic glasses through dynamic clusters. Journal of Materials Research, 2014, 29, 561-568.	1.2	2
74	On the dependence of surface undulation on film thickness. Journal of Physics and Chemistry of Solids, 2014, 75, 500-504.	1.9	2
75	Constitutive modeling of mechanical behaviors in gradient nanostructured alloys with hierarchical dual-phased microstructures. Acta Mechanica, 2022, 233, 3197-3212.	1.1	2
76	Implementation of Glass Transition Physics in Glass Molding Simulation. Advanced Materials Research, 0, 325, 707-712.	0.3	1
77	Plastic Deformation Clusters with High Kinetic Energy in Metallic Glass. Key Engineering Materials, 0, 535-536, 152-155.	0.4	1
78	Viscosity of Amorphous Materials during Glass-Forming: More from the Adam-Gibbs Law. Key Engineering Materials, 0, 535-536, 223-226.	0.4	1
79	Effect of Stress-Dependent Thermal Conductivity on Thermo-Mechanical Coupling Behavior in GaN-Based Nanofilm Under Pulse Heat Source. Acta Mechanica Solida Sinica, 2021, 34, 27-39.	1.0	1
80	Damage Analysis of Tensile Deformation of Co-rolled SMATed 304SS. , 2010, , .		0
81	Characterization of plastically graded nanostructured material. , 2010, , .		0
82	A New Method for Measuring the Residual Stresses in Multi-Layered Thin Film Systems. Advanced Materials Research, 0, 591-593, 884-890.	0.3	0
83	Methodologies for measuring residual stress distributions in epitaxial thin films. , 2013, , .		0
84	Micro/Nanoscale Manufacture of Advanced Materials and an Exploration of Their Properties. Journal of Nanomaterials, 2018, 2018, 1-2.	1.5	0
85	Modeling the strain rate-dependent constitutive behavior in nanotwinned polycrystalline metals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126206.	0.9	0
86	Electromagnetic–Thermo–Mechanical Coupling Behavior of Cu/Si Layered Thin Plate Under Pulsed Magnetic Field. Acta Mechanica Solida Sinica, 0, , 1.	1.0	0
87	Modeling of ion exchange in glass considering large viscoelastic deformation and mechanoâ€electrochemical coupling. Journal of the American Ceramic Society, 0, , .	1.9	0