

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813535/publications.pdf Version: 2024-02-01

XIN MANC

#	Article	IF	CITATIONS
1	Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10483-10487.	3.3	390
2	The Antiapoptotic Activity of Melatonin in Neurodegenerative Diseases. CNS Neuroscience and Therapeutics, 2009, 15, 345-357.	1.9	205
3	Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16012-16017.	3.3	180
4	Increase of Oxidatively Modified Protein Is Associated With a Decrease of Proteasome Activity and Content in Aging Epidermal Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2000, 55, B220-B227.	1.7	178
5	The Melatonin MT1 Receptor Axis Modulates Mutant Huntingtin-Mediated Toxicity. Journal of Neuroscience, 2011, 31, 14496-14507.	1.7	145
6	Methazolamide and Melatonin Inhibit Mitochondrial Cytochrome C Release and Are Neuroprotective in Experimental Models of Ischemic Injury. Stroke, 2009, 40, 1877-1885.	1.0	137
7	Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2013, 55, 26-35.	2.1	111
8	Inhibitors of Cytochrome <i>c</i> Release with Therapeutic Potential for Huntington's Disease. Journal of Neuroscience, 2008, 28, 9473-9485.	1.7	101
9	<i>N</i> -Acetyl-Serotonin Offers Neuroprotection through Inhibiting Mitochondrial Death Pathways and Autophagic Activation in Experimental Models of Ischemic Injury. Journal of Neuroscience, 2014, 34, 2967-2978.	1.7	97
10	Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 7174.	1.8	87
11	Role of Alcohol Drinking in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2020, 21, 2316.	1.8	75
12	Nortriptyline Protects Mitochondria and Reduces Cerebral Ischemia/Hypoxia Injury. Stroke, 2008, 39, 455-462.	1.0	74
13	Central Nervous System Agents for Ischemic Stroke: Neuroprotection Mechanisms. Central Nervous System Agents in Medicinal Chemistry, 2011, 11, 81-97.	0.5	70
14	Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochemical and Biophysical Research Communications, 2012, 420, 397-403.	1.0	70
15	Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2013, 70, 4729-4745.	2.4	65
16	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	1.8	64
17	Protection of melatonin in experimental models of newborn hypoxicâ€ischemic brain injury through <scp>MT</scp> 1 receptor. Journal of Pineal Research, 2018, 64, e12443.	3.4	62
18	N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-15.	1.9	61

Xin Wang

#	Article	IF	CITATIONS
19	The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radical Biology and Medicine, 2019, 130, 215-233.	1.3	59
20	Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice. Neurological Research, 2012, 34, 390-399.	0.6	58
21	MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget, 2017, 8, 19244-19254.	0.8	57
22	Screening the expression characteristics of several miRNAs in <i>G93Aâ€SOD1</i> transgenic mouse: altered expression of miRNAâ€124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. Journal of Neurochemistry, 2018, 145, 51-67.	2.1	55
23	Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro. Experimental Neurology, 2012, 233, 783-790.	2.0	54
24	Neuroprotective agents for neonatal hypoxic–ischemic brain injury. Drug Discovery Today, 2015, 20, 1372-1381.	3.2	52
25	Nortriptyline delays disease onset in models of chronic neurodegeneration. European Journal of Neuroscience, 2007, 26, 633-641.	1.2	49
26	Wnt Signaling is Altered by Spinal Cord Neuronal Dysfunction in Amyotrophic Lateral Sclerosis Transgenic Mice. Neurochemical Research, 2013, 38, 1904-1913.	1.6	47
27	Dysregulation of Receptor Interacting Protein-2 and Caspase Recruitment Domain Only Protein Mediates Aberrant Caspase-1 Activation in Huntington's Disease. Journal of Neuroscience, 2005, 25, 11645-11654.	1.7	45
28	The altered autophagy mediated by TFEB in animal and cell models of amyotrophic lateral sclerosis. American Journal of Translational Research (discontinued), 2015, 7, 1574-87.	0.0	35
29	Electrical Stimulation of Cerebellar Fastigial Nucleus: Mechanism of Neuroprotection and Prospects for Clinical Application against Cerebral Ischemia. CNS Neuroscience and Therapeutics, 2014, 20, 710-716.	1.9	34
30	Nâ€acetylâ€ <scp>l</scp> â€tryptophan, but not Nâ€acetylâ€ <scp>d</scp> â€tryptophan, rescues neuronal cell o in models of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2015, 134, 956-968.	leath 2.1	34
31	miRNA-9 expression is upregulated in the spinal cord of C93A-SOD1 transgenic mice. International Journal of Clinical and Experimental Pathology, 2013, 6, 1826-38.	0.5	34
32	Dipyrone Inhibits Neuronal Cell Death and Diminishes Hypoxic/Ischemic Brain Injury. Neurosurgery, 2011, 69, 942-956.	0.6	32
33	Increased stem cell proliferation in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. Journal of Neurochemistry, 2007, 102, 1125-1138.	2.1	31
34	Role of Wnt1 and Fzd1 in the spinal cord pathogenesis of amyotrophic lateral sclerosis-transgenic mice. Biotechnology Letters, 2013, 35, 1199-1207.	1.1	31
35	Melatonin attenuates white matter damage after focal brain ischemia in rats by regulating the TLR4/NF-ΰB pathway. Brain Research Bulletin, 2019, 150, 168-178.	1.4	31
36	ILâ€⊋mAb reduces demyelination after focal cerebral ischemia by suppressing CD8 ⁺ T cells. CNS Neuroscience and Therapeutics, 2019, 25, 532-543.	1.9	31

Xin Wang

#	Article	IF	CITATIONS
37	N-acetyl-l-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiology of Disease, 2015, 80, 93-103.	2.1	30
38	Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discovery Today, 2015, 20, 65-75.	3.2	30
39	Neuroprotection for Amyotrophic Lateral Sclerosis: Role of Stem Cells, Growth Factors, and Gene Therapy. Central Nervous System Agents in Medicinal Chemistry, 2012, 12, 15-27.	0.5	29
40	The Impact of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Cells, 2022, 11, 2049.	1.8	28
41	Umbilical cord blood cells regulate the differentiation of endogenous neural stem cells in hypoxic ischemic neonatal rats via the hedgehog signaling pathway. Brain Research, 2014, 1560, 18-26.	1.1	27
42	Protective Effect of N-Acetylserotonin against Acute Hepatic Ischemia-Reperfusion Injury in Mice. International Journal of Molecular Sciences, 2013, 14, 17680-17693.	1.8	22
43	Expression of Wnt5a and its receptor Fzd2 is changed in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice. International Journal of Clinical and Experimental Pathology, 2013, 6, 1245-60.	0.5	22
44	The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells, 2022, 11, 572.	1.8	21
45	Therapeutic Application of Histone Deacetylase Inhibitors for Stroke. Central Nervous System Agents in Medicinal Chemistry, 2011, 11, 138-149.	0.5	19
46	Bone marrow mesenchymal stromal cells alleviate brain white matter injury via the enhanced proliferation of oligodendrocyte progenitor cells in focal cerebral ischemic rats. Brain Research, 2018, 1680, 127-136.	1.1	18
47	ClC-3 Expression and Its Association with Hyperglycemia Induced HT22 Hippocampal Neuronal Cell Apoptosis. Journal of Diabetes Research, 2016, 2016, 1-12.	1.0	17
48	Monogenic, Polygenic, and MicroRNA Markers for Ischemic Stroke. Molecular Neurobiology, 2019, 56, 1330-1343.	1.9	16
49	Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells, 2021, 10, 839.	1.8	15
50	N-acetylserotonin alleviated the expression of interleukin-1β in retinal ischemia–reperfusion rats via the TLR4/NF-κB/NLRP3 pathway. Experimental Eye Research, 2021, 208, 108595.	1.2	14
51	Ginsenoside Rd and ginsenoside Re offer neuroprotection in a novel model of Parkinson's disease. American Journal of Neurodegenerative Disease, 2016, 5, 52-61.	0.1	13
52	The neuroprotective effects of Insulin-Like Growth Factor 1 via the Hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Research Bulletin, 2021, 177, 373-387.	1.4	12
53	Sox9 regulates hyperexpression of Wnt1 and Fzd1 in human osteosarcoma tissues and cells. International Journal of Clinical and Experimental Pathology, 2014, 7, 4795-805.	0.5	10
54	Neural metabolite changes in corpus striatum after rat multipotent mesenchymal stem cells transplanted in hemiparkinsonian rats by magnetic resonance spectroscopy. International Journal of Neuroscience, 2013, 123, 883-891.	0.8	9

XIN WANG

#	Article	IF	CITATIONS
55	DDX3 binding with CK1ε was closely related to motor neuron degeneration of ALS by affecting neurite outgrowth. American Journal of Translational Research (discontinued), 2017, 9, 4627-4639.	0.0	7
56	Joint protective effect of exogenous neuroglobin and hemin in rat focal ischemic brain tissues. International Journal of Clinical and Experimental Medicine, 2014, 7, 2009-16.	1.3	6
57	Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. American Journal of Translational Research (discontinued), 2020, 12, 70-89.	0.0	5
58	Melatonin in neuroskeletal biology. Current Opinion in Pharmacology, 2021, 61, 42-48.	1.7	4
59	The mechanism of the WNT5A and FZD4 receptor mediated WNT/β–catenin pathway in the degeneration of ALS spinal cord motor neurons. Biochemical and Biophysical Research Communications, 2022, 609, 23-30.	1.0	4
60	Editorial [Hot Topic: Recent Advances in Stroke: Molecular Mechanisms, Approaches, and Treatments (Guest Editor: Xin Wang)]. Central Nervous System Agents in Medicinal Chemistry, 2011, 11, 80-80.	0.5	3
61	Protective effects of perfluorooctyl-bromide nanoparticles on early brain injuries following subarachnoid hemorrhage in rats. American Journal of Translational Research (discontinued), 2015, 7, 1404-16.	0.0	3
62	Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cellular and Molecular Neurobiology, 2023, 43, 1019-1035.	1.7	3
63	Melatonin and Other Neuroprotective Agents Target Molecular Mechanisms of Disease in Amyotrophic Lateral Sclerosis. , 2016, , 869-903.		1
64	The Role of Purinergic Signaling in the Pathophysiology of Perinatal Hypoxic-Ischemic Encephalopathy. , 2020, , .		0