Georges Kouroussis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813500/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Railway ground vibration and mitigation measures: benchmarking of best practices. Railway Engineering Science, 2022, 30, 1-22.	2.7	31
2	A Co-Simulation Strategy in the Simulation of Vehicle-Track-Ground Subdomains. , 2022, , .		0
3	Smart Railway Traffic Monitoring Using Fiber Bragg Grating Strain Gauges. Sensors, 2022, 22, 3429.	2.1	7
4	Mechanical characterization of E-glass laminates under large bending. Composite Structures, 2021, 255, 112892.	3.1	1
5	Noise and vibration from transportation. Journal of Zhejiang University: Science A, 2021, 22, 1-5.	1.3	4
6	Derivation of a fatigue damage law for an adhesive from in-situ bending tests. Engineering Fracture Mechanics, 2021, 245, 107587.	2.0	3
7	Dynamic interaction of soil and end-bearing piles in sloping ground: Numerical simulation and analytical solution. Computers and Geotechnics, 2021, 134, 103917.	2.3	46
8	Experimental study on ground vibration induced by double-line subway trains and road traffic. Transportation Geotechnics, 2021, 29, 100564.	2.0	23
9	A continuum-based model on axial pile-head dynamic impedance in inhomogeneous soil. Acta Geotechnica, 2021, 16, 3339-3353.	2.9	35
10	Vertical vibration of piles with square crossâ€section. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45, 2629-2653.	1.7	13
11	A hybrid methodology for predicting train-induced vibration on sensitive equipment in far-field buildings. Transportation Geotechnics, 2021, 31, 100682.	2.0	22
12	A transfer function method to predict building vibration and its application to railway defects. Construction and Building Materials, 2020, 232, 117217.	3.2	28
13	A vehicle/track/soil model using co-simulation between multibody dynamics and finite element analysis. International Journal of Rail Transportation, 2020, 8, 135-158.	1.8	16
14	Effect of applied force cosimulation schemes on recoupled vehicle/track problems. Multibody System Dynamics, 2020, 50, 337-353.	1.7	10
15	Predicting high-speed railway vibration using time-domain numerical engineering approaches. , 2019, , 187-216.		4
16	Experimental Modal Analysis of Hand–Arm Vibration in Golf: Influence of Grip Strength. Applied Sciences (Switzerland), 2019, 9, 2050.	1.3	3
17	Prediction and mitigation of train-induced vibrations of large-scale building constructed on subway tunnel. Science of the Total Environment, 2019, 668, 485-499.	3.9	131
18	Urban railway ground vibrations induced by localized defects: using dynamic vibration absorbers as amitigation solution. Journal of Zhejiang University: Science A, 2019, 20, 83-97.	1.3	26

#	Article	IF	CITATIONS
19	Modelling, simulation and evaluation of ground vibration caused by rail vehicles. Vehicle System Dynamics, 2019, 57, 936-983.	2.2	100
20	A 2.5D time-frequency domain model for railway induced soil-building vibration due to railway defects. Soil Dynamics and Earthquake Engineering, 2019, 120, 332-344.	1.9	31
21	The effect of transportation vibration on the urban acoustic environment. Science of the Total Environment, 2019, 650, 2640.	3.9	2
22	Stability and Error Analysis of Applied-Force Co-simulation Methods Using Mixed One-Step Integration Schemes. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , 243-254.	0.1	2
23	A VEHICLE/TRACK CO-SIMULATION MODEL USING EASYDYN. , 2019, , .		0
24	Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody System Dynamics, 2018, 42, 495-514.	1.7	10
25	A Hybrid Numerical-Experimental Assessment of Railway Ground Vibration in Urban Area. , 2018, , .		2
26	Assessing the ground vibrations produced by a heavy vehicle traversing a traffic obstacle. Science of the Total Environment, 2018, 612, 1568-1576.	3.9	16
27	Improved analysis of ground vibrations produced by man-made sources. Science of the Total Environment, 2018, 616-617, 517-530.	3.9	20
28	Assessment of railway ground vibration in urban area using in-situ transfer mobilities and simulated vehicle-track interaction. International Journal of Rail Transportation, 2018, 6, 113-130.	1.8	24
29	Railway monitoring system using optical fiber grating accelerometers. Smart Materials and Structures, 2018, 27, 105033.	1.8	37
30	A Trackside Sensor System for Train Axle Counting by Fiber Bragg Grating Accelerometer. , 2018, , .		1
31	Environmental Ground-Borne Noise and Vibration from Urban Light Rail Transportation During Construction and Operation. Current Pollution Reports, 2017, 3, 162-173.	3.1	11
32	A combined numerical/experimental prediction method for urban railway vibration. Soil Dynamics and Earthquake Engineering, 2017, 97, 377-386.	1.9	47
33	Assessment of timber element mechanical properties using experimental modal analysis. Construction and Building Materials, 2017, 134, 254-261.	3.2	25
34	Novel test prototype for the determination of mode I fracture parameters: application to adhesively bonded electronics. Procedia Structural Integrity, 2017, 5, 5-12.	0.3	1
35	Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review. Rock Mechanics and Rock Engineering, 2017, 50, 171-193.	2.6	82
36	Using experimental modal analysis to assess the behaviour of timber elements. Mechanics and Industry, 2017, 18, 704.	0.5	4

#	Article	IF	CITATIONS
37	Structural impact response for assessing railway vibration induced on buildings. Mechanics and Industry, 2017, 18, 703.	0.5	5
38	GROUND VIBRATION GENERATED BY THE PASSING OF A TRUCK ON A SPEED BUMP. , 2017, , .		1
39	Multibody simulation of vehicles equipped with an automatic transmission. Journal of Physics: Conference Series, 2016, 744, 012210.	0.3	Ο
40	Railway structure monitoring solutions using fibre Bragg grating sensors. International Journal of Rail Transportation, 2016, 4, 135-150.	1.8	30
41	Cost-effective FBG interrogation combined with cepstral-based signal processing for railway traffic monitoring. Proceedings of SPIE, 2016, , .	0.8	3
42	Edge-filter technique and dominant frequency analysis for high-speed railway monitoring with fiber Bragg gratings. Smart Materials and Structures, 2016, 25, 075029.	1.8	21
43	The effect of embankment on high speed rail ground vibrations. International Journal of Rail Transportation, 2016, 4, 229-246.	1.8	47
44	Preface to special issue on †Vibration and noise in rail transportation'. International Journal of Rail Transportation, 2016, 4, 191-192.	1.8	0
45	Ground vibrations induced by InterCity/InterRegion trains: a numerical prediction based on the multibody/finite element modeling approach. JVC/Journal of Vibration and Control, 2016, 22, 4192-4210.	1.5	32
46	Railway cuttings and embankments: Experimental and numerical studies of ground vibration. Science of the Total Environment, 2016, 557-558, 110-122.	3.9	57
47	A comprehensive prediction model for vehicle/track/soil dynamic response due to wheel flats. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 1088-1104.	1.3	24
48	The growth of railway ground vibration problems — A review. Science of the Total Environment, 2016, 568, 1276-1282.	3.9	178
49	The growth of railway ground vibration problems — A review. , 2016, 568, 1276-1276.		1
50	Design and test of a novel accelerometer made-up of an optical-fiber embedded within a polymer resin. MATEC Web of Conferences, 2015, 20, 05001.	0.1	1
51	Numerical and experimental assessment of railway-induced ground vibrations generated by IC/IR trains in Brussels. MATEC Web of Conferences, 2015, 20, 02001.	0.1	Ο
52	Robustness of railway rolling stock speed calculation using ground vibration measurements. MATEC Web of Conferences, 2015, 20, 07002.	0.1	3
53	Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors. Sensors, 2015, 15, 20115-20139.	2.1	85
54	Modelling the Environmental Effects of Railway Vibrations from Different Types of Rolling Stock: A Numerical Study. Shock and Vibration, 2015, 2015, 1-15.	0.3	25

#	Article	IF	CITATIONS
55	Robustness Evaluation of Adhesively Bonded Ceramic Quad Flat Chips for Space Applications. Mechanisms and Machine Science, 2015, , 547-557.	0.3	1
56	Preface to special issue on "Railway-induced ground vibration and noise― International Journal of Rail Transportation, 2015, 3, 179-179.	1.8	1
57	Prediction and efficient control of vibration mitigation using floating slabs: practical application at Athens metro lines 2 and 3. International Journal of Rail Transportation, 2015, 3, 215-232.	1.8	57
58	Railway ground vibrations induced by wheel and rail singularÂdefects. Vehicle System Dynamics, 2015, 53, 1500-1519.	2.2	61
59	Large scale international testing of railway ground vibrations across Europe. Soil Dynamics and Earthquake Engineering, 2015, 71, 1-12.	1.9	103
60	The effect of railway local irregularities on ground vibration. Transportation Research, Part D: Transport and Environment, 2015, 39, 17-30.	3.2	58
61	Verification of empirical warp-based design criteria of space electronic boards. Microelectronics Reliability, 2015, 55, 2786-2792.	0.9	3
62	Prediction of railway ground vibrations: Accuracy of a coupled lumped mass model for representing the track/soil interaction. Soil Dynamics and Earthquake Engineering, 2015, 69, 220-226.	1.9	36
63	Train speed calculation using ground vibrations. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 466-483.	1.3	32
64	Benchmarking railway vibrations – Track, vehicle, ground and building effects. Construction and Building Materials, 2015, 92, 64-81.	3.2	182
65	Vehicle and powertrain dynamics analysis with an automatic gearbox. Mechanism and Machine Theory, 2015, 83, 109-124.	2.7	29
66	Prediction of railway ground vibrations: Accuracy of a coupled lumped mass model for representing the track/soil interaction. , 2015, 69, 220-220.		1
67	The effect of railway local irregularities on ground vibration. , 2015, 39, 17-17.		1
68	RAILWAY-INDUCED GROUND VIBRATIONS IN THE PRESENCE OF LOCAL TRACK IRREGULARITIES AND WHEEL FLATS. , 2015, , .		2
69	Railway-induced ground vibrations – a review of vehicle effects. International Journal of Rail Transportation, 2014, 2, 69-110.	1.8	235
70	Field testing and analysis of high speed rail vibrations. Soil Dynamics and Earthquake Engineering, 2014, 67, 102-118.	1.9	127
71	Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils. Soil Dynamics and Earthquake Engineering, 2014, 66, 78-88.	1.9	60
72	Assessment of railway vibrations using an efficient scoping model. Soil Dynamics and Earthquake Engineering, 2014, 58, 37-47.	1.9	74

#	Article	IF	CITATIONS
73	Using three-dimensional finite element analysis in time domain to model railway-induced ground vibrations. Advances in Engineering Software, 2014, 70, 63-76.	1.8	74
74	A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the Brussels Region. Science of the Total Environment, 2014, 482-483, 452-460.	3.9	48
75	Building vibrations induced by human activities: a benchmark of existing standards. Mechanics and Industry, 2014, 15, 345-353.	0.5	17
76	Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils. , 2014, 66, 78-78.		1
77	Prediction of pressure in the spinal column during professional physical activities: the use of multibody simulation. Mechanics and Industry, 2014, 15, 355-361.	0.5	0
78	THREE-DIMENSIONAL FINITE ELEMENT MODELLING OF DYNAMIC PILE-SOIL-PILE INTERACTION IN TIME DOMAIN. , 2014, , .		0
79	Investigating the influence of soil properties on railway traffic vibration using a numerical model. Vehicle System Dynamics, 2013, 51, 421-442.	2.2	44
80	Symbolic generation of the kinematics of multibody systems in EasyDyn: From MuPAD to Xcas/Giac. Theoretical and Applied Mechanics Letters, 2013, 3, 013012.	1.3	34
81	Experimental study of ground vibrations induced by Brussels IC/IR trains in their neighbourhood. Mechanics and Industry, 2013, 14, 99-105.	0.5	19
82	Prediction of Ground Vibrations Induced by Urban Railway Traffic: An Analysis of the Coupling Assumptions Between Vehicle, Track, Soil, and Buildings. International Journal of Acoustics and Vibrations, 2013, 18, .	0.3	15
83	Prediction of railway induced ground vibration through multibody and finite element modelling. Mechanical Sciences, 2013, 4, 167-183.	0.5	57
84	Efficiency of resilient wheels on the alleviation of railway ground vibrations. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226, 381-396.	1.3	36
85	Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic. Vehicle System Dynamics, 2012, 50, 619-639.	2.2	49
86	A two-step time simulation of ground vibrations induced by the railway traffic. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 454-472.	1.1	40
87	Design of Viscous Dynamic Vibration Absorber for a Vertical-Axis Wind Turbine. , 2012, , .		0
88	Output-Only Modal Analysis of an Internal Unreachable Module Embedded in a Space Electronic Equipment. , 2012, , .		0
89	Finite-Dynamic Model for Infinite Media: Corrected Solution of Viscous Boundary Efficiency. Journal of Engineering Mechanics - ASCE, 2011, 137, 509-511.	1.6	82
90	Discrete modelling of vertical track–soil coupling for vehicle–track dynamics. Soil Dynamics and Earthquake Engineering, 2011, 31, 1711-1723.	1.9	69

#	Article	IF	CITATIONS
91	Free field vibrations caused by high-speed lines: Measurement and time domain simulation. Soil Dynamics and Earthquake Engineering, 2011, 31, 692-707.	1.9	108
92	The Importance of a Detailed Vehicle Modelling in the Numerical Prediction of Railway Ground Vibrations. Springer Proceedings in Physics, 2011, , 175-181.	0.1	0
93	On the interest of integrating vehicle dynamics for the ground propagation of vibrations: the case of urban railway traffic. Vehicle System Dynamics, 2010, 48, 1553-1571.	2.2	42
94	Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223, 405-413.	1.3	57
95	Spectral-Based Fatigue Assessment of Ball Grid Arrays under Aerospace Vibratory Environment. Key Engineering Materials, 0, 569-570, 425-432.	0.4	4
96	Airborne and Ground-Borne Noise and Vibration from Urban Rail Transit Systems. , 0, , .		5
97	Railway ground vibrations induced by wheel and rail singular defects. , O, .		1
98	The effect of embankment on high speed rail ground vibrations. , 0, .		1
99	Prediction of Environmental Vibrations Induced by Railway Traffic using a Three-Dimensional Dynamic Finite Element Analysis. , 0, , .		2
100	Comparison of X–T and X–X co-simulation techniques applied on railway dynamics. Multibody System Dynamics, 0, , 1.	1.7	2
101	Shielding Structures From High Speed Rail Vibrations Using Wave Barriers. , 0, , .		0
102	Validation of a Three-dimensional Finite Element Model for Critical Velocity. , 0, , .		0