Bruno A M Carciofi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mannosylerythritol lipids as green pesticides and plant biostimulants. Journal of the Science of Food and Agriculture, 2023, 103, 37-47.	1.7	5
2	Mechanistic modeling and CFD simulation of gas chromatography to predict separation processes. Brazilian Journal of Chemical Engineering, 2022, 39, 207-223.	0.7	0
3	Effects of vacuum and multiflash drying on the microbiota and colour of dried yellow mealworm (Tenebrio molitor). Journal of Insects As Food and Feed, 2022, 8, 23-33.	2.1	2
4	Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 2022, 312, 110748.	2.7	77
5	Mechanical-acoustical measurements to assess the crispness of dehydrated bananas at different water activities. LWT - Food Science and Technology, 2022, 154, 112822.	2.5	5
6	Survival Analysis to Predict How Color Influences the Shelf Life of Strawberry Leather. Foods, 2022, 11, 218.	1.9	7
7	Temperature control for high-quality oil-free sweet potato CHIPS produced by microwave rotary drying under vacuum. LWT - Food Science and Technology, 2022, 157, 113047.	2.5	8
8	Effective pulsed light treatments for inactivating Salmonella enterica serotypes. Food Control, 2022, 135, 108776.	2.8	7
9	Influence of Emerging Technologies on the Utilization of Plant Proteins. Frontiers in Nutrition, 2022, 9, 809058.	1.6	27
10	Modelling the inactivation, survival and growth of Salmonella enterica under osmotic stress considering inoculum phase and serotype. Journal of Applied Microbiology, 2022, 132, 3973-3986.	1.4	1
11	Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. Horticulturae, 2022, 8, 265.	1.2	23
12	Kinetics of bread physical properties in baking depending on actual finely controlled temperature. Food Control, 2022, 137, 108898.	2.8	3
13	Cold-pressed sesame seed meal as a protein source: Effect of processing on the protein digestibility, amino acid profile, and functional properties. Journal of Food Composition and Analysis, 2022, 111, 104634.	1.9	19
14	Copolymerization of limonene oxide and cyclic anhydrides catalyzed by ionic liquid BMI·Fe2Cl7, nanoparticles preparation, crosslinking, and cytotoxicity studies. Journal of Polymer Research, 2022, 29, .	1.2	1
15	Mechanistic understanding of microwave-vacuum drying of non-deformable porous media. Drying Technology, 2021, 39, 850-867.	1.7	6
16	Microwave vacuum drying of <scp><i>Pereskia aculeata</i></scp> Miller leaves: Powder production and characterization. Journal of Food Process Engineering, 2021, 44, e13612.	1.5	6
17	Producing crispy chickpea snacks by air, freeze, and microwave multi-flash drying. LWT - Food Science and Technology, 2021, 140, 110781.	2.5	8
18	An innovative hybrid-solar-vacuum dryer to produce high-quality dried fruits and vegetables. LWT - Food Science and Technology, 2021, 140, 110777.	2.5	18

#	Article	IF	CITATIONS
19	Active cellulose acetate arvacrol films: Antibacterial, physical and thermal properties. Packaging Technology and Science, 2021, 34, 463-474.	1.3	13

20 Solubility and effective diffusion coefficient of <scp>CO₂</scp> in fresh cheese (type) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

21	Conductive drying methods for producing high-quality restructured pineapple-starch snacks. Innovative Food Science and Emerging Technologies, 2021, 70, 102701.	2.7	6
22	Oilseed by-products as plant-based protein sources: Amino acid profile and digestibility. Future Foods, 2021, 3, 100023.	2.4	33
23	Antibacterial Activity of Low-Density Polyethylene and Low-Density Polyethylene-co-maleic Anhydride Films Incorporated with ZnO Nanoparticles. Food and Bioprocess Technology, 2021, 14, 1872-1884.	2.6	8
24	Apoptosis Induction in Murine Melanoma (B16F10) Cells by Mannosylerythritol Lipids-B; a Glycolipid Biosurfactant with Antitumoral Activities. Applied Biochemistry and Biotechnology, 2021, 193, 3855-3866.	1.4	7
25	Engineering modeling frameworks for microbial food safety at various scales. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4213-4249.	5.9	14
26	Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomedicine and Pharmacotherapy, 2021, 142, 112018.	2.5	52
27	Shelf-life extension of meat products by cellulose acetate antimicrobial film incorporated with oregano's essential oil. Research, Society and Development, 2021, 10, e271101623335.	0.0	1
28	Mathematical modeling and experimental assessment of the cast-tape drying. Drying Technology, 2020, 38, 1024-1035.	1.7	13
29	Recent Advances in the Production of Fruit Leathers. Food Engineering Reviews, 2020, 12, 68-82.	3.1	19
30	Spectrum crispness sensory scale correlation with instrumental acoustic high-sampling rate and mechanical analyses. Food Research International, 2020, 129, 108886.	2.9	15
31	Food processing for the improvement of plant proteins digestibility. Critical Reviews in Food Science and Nutrition, 2020, 60, 3367-3386.	5.4	156
32	Empirical modeling of feed conversion in Pacific white shrimp (Litopenaeus vannamei) growth. Ecological Modelling, 2020, 437, 109291.	1.2	6
33	Microwave vacuum drying of foods with temperature control by power modulation. Innovative Food Science and Emerging Technologies, 2020, 65, 102473.	2.7	24
34	Biological activity of mannosylerythritol lipids on the mammalian cells. Applied Microbiology and Biotechnology, 2020, 104, 8595-8605.	1.7	5
35	Evolution of the physicochemical properties of oil-free sweet potato chips during microwave vacuum drying. Innovative Food Science and Emerging Technologies, 2020, 63, 102317.	2.7	39
36	Plant proteins as high-quality nutritional source for human diet. Trends in Food Science and Technology, 2020, 97, 170-184.	7.8	261

BRUNO A M CARCIOFI

#	Article	IF	CITATIONS
37	Mannosylerythritol lipids: antimicrobial and biomedical properties. Applied Microbiology and Biotechnology, 2020, 104, 2297-2318.	1.7	64
38	Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123739.	2.3	58
39	Epoxidation of (<i>R</i>)-(+)-Limonene to 1,2-Limonene Oxide Mediated by Low-Cost Immobilized <i>Candida antarctica</i> Lipase Fraction B. Industrial & Engineering Chemistry Research, 2019, 58, 13918-13925.	1.8	18
40	Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. Journal of Food Engineering, 2019, 262, 162-169.	2.7	37
41	Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, 2019, 144, 104368.	2.0	23
42	Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT - Food Science and Technology, 2019, 113, 108298.	2.5	37
43	Oil–free potato chips produced by microwave multiflash drying. Journal of Food Engineering, 2019, 261, 133-139.	2.7	36
44	Modeling microbial growth in Minas Frescal cheese under modified atmosphere packaging. Journal of Food Processing and Preservation, 2019, 43, e14024.	0.9	3
45	Optimization of turbidity experiments to estimate the probability of growth for individual bacterial cells. Food Microbiology, 2019, 83, 109-112.	2.1	4
46	Production of mango leathers by cast-tape drying: Product characteristics and sensory evaluation. LWT - Food Science and Technology, 2019, 99, 445-452.	2.5	26
47	ANTIBACTERIAL ACTIVITY OF ZINC OXIDE NANOPARTICLES SYNTHESIZED BY SOLOCHEMICAL PROCESS. Brazilian Journal of Chemical Engineering, 2019, 36, 885-893.	0.7	70
48	Microwave vacuum drying and multi-flash drying of pumpkin slices. Journal of Food Engineering, 2018, 232, 1-10.	2.7	70
49	Heat transfer and drying kinetics of tomato pulp processed by cast-tape drying. Drying Technology, 2018, 36, 160-168.	1.7	20
50	Optimal experimental design to model spoilage bacteria growth in vacuum-packaged ham. Journal of Food Engineering, 2018, 216, 20-26.	2.7	13
51	Thermomechanical and transport properties of LLDPE films impregnated with clove essential oil by high-pressure CO2. Journal of Supercritical Fluids, 2018, 139, 8-18.	1.6	13
52	Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices. LWT - Food Science and Technology, 2018, 96, 612-619.	2.5	53
53	Modeling the growth of Lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. International Journal of Food Microbiology, 2017, 240, 97-101.	2.1	22
54	Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions. International Journal of Food Microbiology, 2017, 240, 57-62.	2.1	21

#	Article	IF	CITATIONS
55	High pressure carbon dioxide for impregnation of clove essential oil in LLDPE films. Innovative Food Science and Emerging Technologies, 2017, 41, 206-215.	2.7	38
56	MATHEMATICAL MODELING OF THE ELECTRIC CURRENT GENERATION IN A MICROBIAL FUEL CELL INOCULATED WITH MARINE SEDIMENT. Brazilian Journal of Chemical Engineering, 2017, 34, 211-225.	0.7	8
57	From Culture-Medium-Based Models to Applications to Food: Predicting the Growth of B. cereus in Reconstituted Infant Formulae. Frontiers in Microbiology, 2017, 8, 1799.	1.5	8
58	EXPERIMENTAL APPROACH TO ASSESS EVAPORATIVE COOLING UNDER FORCED AIR FLOW. Brazilian Journal of Chemical Engineering, 2017, 34, 171-181.	0.7	2
59	Microbial growth models: A general mathematical approach to obtain μ max and λ parameters from sigmoidal empirical primary models. Brazilian Journal of Chemical Engineering, 2017, 34, 369-375.	0.7	17
60	Predictive Modeling of the Growth of Lactobacillus Viridescens under Non-isothermal Conditions. Procedia Food Science, 2016, 7, 29-32.	0.6	2
61	Estimation of the Temperature Dependent Growth Parameters of Lactobacillus Viridescens in Culture Medium with Two-step Modelling and Optimal Experimental Design Approaches. Procedia Food Science, 2016, 7, 25-28.	0.6	1
62	Cast-tape drying of tomato juice for the production of powdered tomato. Food and Bioproducts Processing, 2016, 100, 145-155.	1.8	35
63	Mathematical Modeling of Lactobacillus Viridescens Growth in Vacuum Packed Sliced Ham under non Isothermal Conditions. Procedia Food Science, 2016, 7, 33-36.	0.6	5
64	Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT - Food Science and Technology, 2016, 72, 501-509.	2.5	57
65	A microwave multi-flash drying process for producing crispy bananas. Journal of Food Engineering, 2016, 178, 1-11.	2.7	85
66	Production of Tomato Powder by Refractance Window Drying. Drying Technology, 2015, 33, 1463-1473.	1.7	58
67	Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Research International, 2015, 69, 410-417.	2.9	68
68	How to make a microwave vacuum dryer with turntable. Journal of Food Engineering, 2015, 166, 276-284.	2.7	59
69	Experimental approach to evaluate the influence of characteristic length on the dynamics of biphasic flow in vacuum impregnation. Chemical Engineering Science, 2015, 137, 875-883.	1.9	6
70	Modeling the Growth of Byssochlamys fulva on Solidified Apple Juice at Different Temperatures. Brazilian Archives of Biology and Technology, 2014, 57, 971-978.	0.5	11
71	Poultry Carcasses Chilled by Forced Air, Water Immersion and Combination of Forced Air and Water Immersion. Journal of Food Process Engineering, 2014, 37, 550-559.	1.5	1
72	Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. Journal of Food Engineering, 2013, 119, 490-496.	2.7	42

BRUNO A M CARCIOFI

#	Article	IF	CITATIONS
73	Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. Journal of Theoretical Biology, 2013, 335, 88-96.	0.8	55
74	Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures. Food Science and Technology, 2013, 33, 60-67.	0.8	58
75	Dynamics of vacuum impregnation of apples: Experimental data and simulation results using a VOF model. Journal of Food Engineering, 2012, 113, 337-343.	2.7	31
76	Homogeneous Volume-of-Fluid (VOF) Model for Simulating the Imbibition in Porous Media Saturated by Gas. Energy & Fuels, 2011, 25, 2267-2273.	2.5	15
77	Influence of temperature on the respiration rate of minimally processed organic carrots (Daucus) Tj ETQq1 1 0.	784314 rgB ⁻ 0.8	Г / <mark>Overlock 1</mark>
78	On-line monitoring of heat transfer coefficients in a stirred tank from the signatures of the resultant force on a submerged body. International Journal of Refrigeration, 2010, 33, 600-606.	1.8	1
79	Construction and application a vane system in a rotational rheometer for determination of the rheological properties of Monascus ruber CCT 3802. Journal of Biorheology, 2010, 24, 29-35.	0.2	20
80	Evaluation of the effects of water agitation by air injection and water recirculation on the heat transfer coefficients in immersion cooling. Journal of Food Engineering, 2010, 96, 59-65.	2.7	3
81	Experimental results and modeling of poultry carcass cooling by water immersion. Food Science and Technology, 2010, 30, 447-453.	0.8	10
82	Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. Journal of Food Engineering, 2009, 91, 553-559.	2.7	52
83	Salting operational diagrams for chicken breast cuts: Hydration–dehydration. Journal of Food Engineering, 2008, 88, 36-44.	2.7	44
84	Efeito da impregnação a vácuo na transferência de massa durante o processo de salga de cortes de peito de frango. Food Science and Technology, 2008, 28, 366-372.	0.8	15
85	Water uptake by poultry carcasses during cooling by water immersion. Chemical Engineering and Processing: Process Intensification, 2007, 46, 444-450.	1.8	24
86	Experimental Determination of the Dynamics of Vacuum Impregnation of Apples. Journal of Food Science, 2007, 72, E470-5.	1.5	30
87	DETERMINATION OF HEAT TRANSFER COEFFICIENT IN COOLING-FREEZING TUNNELS USING EXPERIMENTAL TIME–TEMPERATURE DATA. Journal of Food Process Engineering, 2007, 30, 717-728.	1.5	7
88	Vacuum Cooling of Cooked Mussels (Perna perna). Food Science and Technology International, 2006, 12, 19-25.	1.1	11
89	Determination of thermal diffusivity of mortadella using actual cooking process data. Journal of Food Engineering, 2002, 55, 89-94.	2.7	29
90	Drying of foods under intermittent supply of microwave energy: proposal for a mathematical model. Acta Scientiarum - Technology, 0, 43, e51037.	0.4	2

#	Article	IF	CITATIONS
91	NanopartÃculas de Óxido de Zinco Obtidas Via Processamento SoloquÃmico Como Agente Antimicrobiano Frente Ao Staphylococcus Aureus. , 0, , .		0