
Michal J Besser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813456/publications.pdf Version: 2024-02-01

MICHAL | RESSED

#	Article	IF	CITATIONS
1	Epigenetic Profiling and Response to CD19 Chimeric Antigen Receptor T-Cell Therapy in B-Cell Malignancies. Journal of the National Cancer Institute, 2022, 114, 436-445.	6.3	29
2	Impact of <i>TP53</i> Genomic Alterations in Large B-Cell Lymphoma Treated With CD19-Chimeric Antigen Receptor T-Cell Therapy. Journal of Clinical Oncology, 2022, 40, 369-381.	1.6	60
3	Parameters of longâ€term response with <scp>CD28</scp> â€based <scp>CD19 chimaeric antigen receptorâ€modified</scp> T cells in children and young adults with <scp>Bâ€acute lymphoblastic leukaemia</scp> . British Journal of Haematology, 2022, 197, 475-481.	2.5	10
4	Point-of-care anti-CD19 CAR T-cells for treatment of relapsed and refractory aggressive B-cell lymphoma. Transplantation and Cellular Therapy, 2022, 28, 251-257.	1.2	14
5	Molecular and Functional Signatures Associated with CAR T Cell Exhaustion and Impaired Clinical Response in Patients with B Cell Malignancies. Cells, 2022, 11, 1140.	4.1	8
6	Adenosine-Deaminase-Acting-on-RNA-1 Facilitates T-cell Migration toward Human Melanoma Cells. Cancer Immunology Research, 2022, 10, 1127-1140.	3.4	4
7	microRNA expression patterns in tumor infiltrating lymphocytes are strongly associated with response to adoptive cell transfer therapy. Cancer Immunology, Immunotherapy, 2021, 70, 1541-1555.	4.2	4
8	Immune imitation of tumor progression after anti-CD19 chimeric antigen receptor T cells treatment in aggressive B-cell lymphoma. Bone Marrow Transplantation, 2021, 56, 1134-1143.	2.4	17
9	Characteristics and risk factors of infections following CD28-based CD19 CAR-T cells. Leukemia and Lymphoma, 2021, 62, 1692-1701.	1.3	22
10	Identification of bacteria-derived HLA-bound peptides in melanoma. Nature, 2021, 592, 138-143.	27.8	187
11	Comparison of non-myeloablative lymphodepleting preconditioning regimens in patients undergoing adoptive T cell therapy. , 2021, 9, e001743.		23
12	Encouraging Survival and High Rates of Toxicity: Allogeneic Hematopoietic Cell Transplantation after Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy in Aggressive Lymphoma Patients. Blood, 2021, 138, 910-910.	1.4	1
13	Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia. Current Research in Translational Medicine, 2020, 68, 17-22.	1.8	24
14	Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia. Frontiers in Immunology, 2020, 11, 1347.	4.8	135
15	Remission of acute myeloid leukemia with t(8;21) following CD19 CAR T-cells. Leukemia, 2020, 34, 1939-1942.	7.2	12
16	Comprehensive single institute experience with melanoma TIL: Long term clinical results, toxicity profile, and prognostic factors of response. Molecular Carcinogenesis, 2020, 59, 736-744.	2.7	24
17	Head-to-head comparison of in-house produced CD19 CAR-T cell in ALL and NHL patients. , 2020, 8, e000148.		42
18	Feasibility of leukapheresis for CAR T-cell production in heavily pre-treated pediatric patients. Transfusion and Apheresis Science, 2020, 59, 102769.	1.0	19

MICHAL J BESSER

#	Article	IF	CITATIONS
19	Genetic Modification of Tumor-Infiltrating Lymphocytes via Retroviral Transduction. Frontiers in Immunology, 2020, 11, 584148.	4.8	2
20	Reduced CTL motility and activity in avascular tumor areas. Cancer Immunology, Immunotherapy, 2019, 68, 1287-1301.	4.2	21
21	Tissue Harvesting for Adoptive Tumor Infiltrating Lymphocyte Therapy in Metastatic Melanoma. Anticancer Research, 2019, 39, 4995-5001.	1.1	9
22	Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence. Cell, 2019, 179, 236-250.e18.	28.9	206
23	Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplantation, 2019, 54, 1643-1650.	2.4	254
24	Tumor-infiltrating lymphocytes from human prostate tumors reveal anti-tumor reactivity and potential for adoptive cell therapy. Oncolmmunology, 2019, 8, e1672494.	4.6	28
25	Combined Expression of Genetic Adjuvants Via mRNA Electroporation Exerts Multiple Immunostimulatory Effects on Antitumor T Cells. Journal of Immunotherapy, 2019, 42, 43-50.	2.4	9
26	Upregulation of Senescent/Exhausted Phenotype of CAR T Cells and Induction of Both Treg and Myeloid Suppressive Cells Correlate with Reduced Response to CAR T Cell Therapy in Relapsed/Refractory B Cell Malignancies. Blood, 2019, 134, 3234-3234.	1.4	12
27	Regulation of CEACAM1 Protein Expression by the Transcription Factor ETS-1 in BRAF-Mutant Human Metastatic Melanoma Cells. Neoplasia, 2018, 20, 401-409.	5.3	11
28	Potent Activation of Human T Cells by mRNA Encoding Constitutively Active CD40. Journal of Immunology, 2018, 201, 2959-2968.	0.8	14
29	Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. American Journal of Hematology, 2018, 93, 1485-1492.	4.1	93
30	CAR T cells induce a complete response in refractory Burkitt Lymphoma. Bone Marrow Transplantation, 2018, 53, 1583-1585.	2.4	25
31	Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients. Cancer Immunology, Immunotherapy, 2018, 67, 1221-1230.	4.2	55
32	First-in-Human Mitochondrial Augmentation of Hematopoietic Stem Cells in Pearson Syndrome. Blood, 2018, 132, 1024-1024.	1.4	7
33	Adoptive Cell Therapy for Metastatic Melanoma. Cancer Journal (Sudbury, Mass), 2017, 23, 48-53.	2.0	43
34	Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation. Frontiers in Immunology, 2017, 8, 1211.	4.8	47
35	Histopathological expression analysis of intercellular adhesion molecule 1 (ICAM-1) along development and progression of human melanoma. Oncotarget, 2017, 8, 99580-99586.	1.8	10
36	Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget, 2016, 7, 5110-5117.	1.8	135

MICHAL J BESSER

#	Article	IF	CITATIONS
37	Metastatic Lung Lesions as a Preferred Resection Site for Immunotherapy With Tumor Infiltrating Lymphocytes. Journal of Immunotherapy, 2016, 39, 218-222.	2.4	7
38	Predictors of tumor-infiltrating lymphocyte efficacy in melanoma. Immunotherapy, 2016, 8, 35-43.	2.0	21
39	Normal human CD4+ helper T cells express Kv1.1 voltage-gated K+ channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFήB non-canonical pathway. Journal of Neural Transmission, 2016, 123, 137-157.	2.8	6
40	SOX9 indirectly regulates CEACAM1 expression and immune resistance in melanoma cells. Oncotarget, 2016, 7, 30166-30177.	1.8	29
41	CEACAM1 and MICA as novel serum biomarkers in patients with acute and recurrent pericarditis. Oncotarget, 2016, 7, 17885-17895.	1.8	12
42	Tumor-Infiltrating Lymphocytes. Cancer Journal (Sudbury, Mass), 2015, 21, 465-469.	2.0	22
43	The nuclear translocation of ERK1/2 as an anticancer target. Nature Communications, 2015, 6, 6685.	12.8	104
44	A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme. Oncotarget, 2015, 6, 28999-29015.	1.8	53
45	Differential regulation of aggressive features in melanoma cells by members of the miR-17-92 complex. Open Biology, 2014, 4, 140030.	3.6	11
46	CT halo sign as an imaging marker for response to adoptive cell therapy in metastatic melanoma with pulmonary metastases. European Radiology, 2014, 24, 1251-1256.	4.5	9
47	CEACAM1 Promotes Melanoma Cell Growth through Sox-2. Neoplasia, 2014, 16, 451-460.	5.3	29
48	Immunotherapy for the Management of Advanced Melanoma: The Next Steps. American Journal of Clinical Dermatology, 2013, 14, 261-272.	6.7	15
49	Is there a future for adoptive cell transfer in melanoma patients?. Oncolmmunology, 2013, 2, e26098.	4.6	7
50	Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma: Intent-to-Treat Analysis and Efficacy after Failure to Prior Immunotherapies. Clinical Cancer Research, 2013, 19, 4792-4800.	7.0	330
51	Adoptive T-cell transfer in melanoma. Immunotherapy, 2013, 5, 79-90.	2.0	21
52	Nicotinamide Inhibits Vasculogenic Mimicry, an Alternative Vascularization Pathway Observed in Highly Aggressive Melanoma. PLoS ONE, 2013, 8, e57160.	2.5	53
53	MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. Journal of Clinical Investigation, 2013, 123, 2703-2718.	8.2	149
54	Development of Allogeneic NK Cell Adoptive Transfer Therapy in Metastatic Melanoma Patients: In Vitro Preclinical Optimization Studies. PLoS ONE, 2013, 8, e57922.	2.5	27

MICHAL J BESSER

#	Article	IF	CITATIONS
55	Novel Anti-Melanoma Immunotherapies: Disarming Tumor Escape Mechanisms. Clinical and Developmental Immunology, 2012, 2012, 1-9.	3.3	24
56	TIL therapy broadens the tumor-reactive CD8 ⁺ T cell compartment in melanoma patients. Oncolmmunology, 2012, 1, 409-418.	4.6	171
57	Novel Immunotherapy for Malignant Melanoma with a Monoclonal Antibody That Blocks CEACAM1 Homophilic Interactions. Molecular Cancer Therapeutics, 2012, 11, 1300-1310.	4.1	58
58	Adoptive cell therapy with autologous tumor-infiltrating lymphocytes and high-dose interleukin-2 for metastatic melanoma: The surgeon's perspective. Experimental and Therapeutic Medicine, 2012, 3, 898-902.	1.8	11
59	CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunology, Immunotherapy, 2012, 61, 1833-1847.	4.2	43
60	Ras Oncoproteins Transfer from Melanoma Cells to T Cells and Modulate Their Effector Functions. Journal of Immunology, 2012, 189, 4361-4370.	0.8	8
61	Regulation of Cancer Aggressive Features in Melanoma Cells by MicroRNAs. PLoS ONE, 2011, 6, e18936.	2.5	77
62	Establishment and Large-scale Expansion of Minimally cultured "Young―Tumor Infiltrating Lymphocytes for Adoptive Transfer Therapy. Journal of Immunotherapy, 2011, 34, 212-220.	2.4	144
63	Systemic dysregulation of CEACAM1 in melanoma patients. Cancer Immunology, Immunotherapy, 2010, 59, 215-230.	4.2	48
64	Clinical Responses in a Phase II Study Using Adoptive Transfer of Short-term Cultured Tumor Infiltration Lymphocytes in Metastatic Melanoma Patients. Clinical Cancer Research, 2010, 16, 2646-2655.	7.0	412
65	Focus on Adoptive T Cell Transfer Trials in Melanoma. Clinical and Developmental Immunology, 2010, 2010, 1-11.	3.3	34
66	Dynamic expression of protective CEACAM1 on melanoma cells during specific immune attack. Immunology, 2009, 126, 186-200.	4.4	47
67	Modifying interleukin-2 concentrations during culture improves function of T cells for adoptive immunotherapy. Cytotherapy, 2009, 11, 206-217.	0.7	20
68	Minimally Cultured or Selected Autologous Tumor-infiltrating Lymphocytes After a Lympho-depleting Chemotherapy Regimen in Metastatic Melanoma Patients. Journal of Immunotherapy, 2009, 32, 415-423.	2.4	113
69	Collection of Large-scale Expanded Lymphocyte Cultures for Adoptive Immunotherapy Using a COBE Spectra Apheresis Machine. Journal of Immunotherapy, 2008, 31, 563-568.	2.4	8
70	Inhibition of Human Tumor-Infiltrating Lymphocyte Effector Functions by the Homophilic Carcinoembryonic Cell Adhesion Molecule 1 Interactions. Journal of Immunology, 2006, 177, 6062-6071.	0.8	52
71	Adoptive cell therapy for metastatic melanoma patients: pre-clinical development at the Sheba Medical Center. Israel Medical Association Journal, 2006, 8, 164-8.	0.1	12