
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813412/publications.pdf Version: 2024-02-01

FWA PLOPKOWSKA

#	Article	IF	CITATIONS
1	Crystallization, structure and properties of plasticized poly(l-lactide). Polymer, 2005, 46, 10290-10300.	1.8	475
2	Plasticization of Poly(l-lactide) with Poly(propylene glycol). Biomacromolecules, 2006, 7, 2128-2135.	2.6	277
3	Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Composites Science and Technology, 2006, 66, 2218-2230.	3.8	277
4	Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer, 2006, 47, 7178-7188.	1.8	260
5	Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. European Polymer Journal, 2005, 41, 1115-1122.	2.6	238
6	Composites of poly(L-lactide) with hemp fibers: Morphology and thermal and mechanical properties. Journal of Applied Polymer Science, 2007, 105, 255-268.	1.3	190
7	Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1509-1514.	3.8	189
8	Structure and Properties of Homogeneous Copolymers of Propylene and 1-Hexene. Macromolecules, 2005, 38, 1232-1243.	2.2	137
9	Critical assessment of overall crystallization kinetics theories and predictions. Progress in Polymer Science, 2006, 31, 549-575.	11.8	127
10	Crystallization of Polyethylene from Melt with Lowered Chain Entanglements. Macromolecules, 2000, 33, 916-932.	2.2	100
11	Structure of polypropylene crystallized in confined nanolayers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3380-3396.	2.4	93
12	Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Composites Part A: Applied Science and Manufacturing, 2016, 82, 34-41.	3.8	87
13	Crystallization of isotactic polypropylene in a temperature gradient. Colloid and Polymer Science, 2001, 279, 939-946.	1.0	73
14	A Structure of Copolymers of Propene and Hexene Isomorphous to Isotactic Poly(1-butene) Form I. Macromolecules, 2006, 39, 5777-5781.	2.2	72
15	Mechanical and Thermal Properties of Green Polylactide Composites with Natural Fillers. Macromolecular Bioscience, 2008, 8, 1190-1200.	2.1	69
16	PLA/β-CD-based fibres loaded with quercetin as potential antibacterial dressing materials. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110949.	2.5	62
17	Melatonin significantly influences seed germination and seedling growth of <i>Stevia rebaudiana</i> Bertoni. PeerJ, 2018, 6, e5009.	0.9	54
18	Formation and transformation of smectic polypropylene nanodroplets. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1795-1803.	2.4	52

#	Article	IF	CITATIONS
19	Shear-induced crystallization of isotactic polypropylene based nanocomposites with montmorillonite. European Polymer Journal, 2009, 45, 88-101.	2.6	46
20	Cavitation during isothermal crystallization of isotactic polypropylene. Journal of Applied Polymer Science, 2001, 79, 2439-2448.	1.3	45
21	Size effect of compliant rubbery particles on craze plasticity in polystyrene. Macromolecules, 1990, 23, 3838-3848.	2.2	41
22	Acoustic emission during polymer crystallization. Nature, 1987, 325, 40-41.	13.7	40
23	All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer, 2013, 54, 4617-4628.	1.8	39
24	Shear-induced nonisothermal crystallization of two grades of PLA. Polymer Testing, 2016, 50, 172-181.	2.3	39
25	The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polymer Testing, 2017, 62, 203-209.	2.3	39
26	Modification of cotton fabric with graphene and reduced graphene oxide using sol–gel method. Cellulose, 2017, 24, 4057-4068.	2.4	39
27	Localized volume deficiencies as an effect of spherulite growth. I. The two-dimensional case. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 1299-1312.	1.0	38
28	Localized volume deficiencies as an effect of spherulite growth. II. The three-dimensional case. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 1313-1322.	1.0	38
29	Biodegradable blends of poly(L-lactide) and starch. Journal of Applied Polymer Science, 2007, 105, 269-277.	1.3	38
30	Toughening of polylactide by blending with a novel random aliphatic–aromatic copolyester. European Polymer Journal, 2014, 59, 59-68.	2.6	36
31	Morphology studies of multilayered HDPE/PS systems. Journal of Applied Polymer Science, 2006, 99, 597-612.	1.3	34
32	Relations between morphology and micromechanical properties of alpha, beta and gamma phases of iPP. Polymer Testing, 2018, 67, 522-532.	2.3	34
33	Izod impact strength of polystyrene-based blends containing low molecular weight polybutadiene. Polymer, 1993, 34, 4435-4444.	1.8	31
34	Structure and characterization of random aliphatic–aromatic copolyester. European Polymer Journal, 2014, 55, 86-97.	2.6	31
35	Acoustic emission during crystallization of polymers. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 1171-1186.	2.4	30
36	Mechanisms of plastic deformation in biodegradable polylactide/poly(1,4â€ <i>cis</i> â€isoprene) blends. Journal of Applied Polymer Science, 2012, 124, 4579-4589.	1.3	29

#	Article	IF	CITATIONS
37	Novel blends of polylactide with ethylene glycol derivatives of POSS. Colloid and Polymer Science, 2015, 293, 23-33.	1.0	29
38	Statistical description of spherulite patterns. Journal of Polymer Science, Polymer Physics Edition, 1985, 23, 1723-1748.	1.0	28
39	Nucleation of crystallization in isotactic polypropylene and polyoxymethylene with poly(tetrafluoroethylene) particles. European Polymer Journal, 2010, 46, 1436-1445.	2.6	27
40	Strain hardening of molten thermoplastic polymers reinforced with poly(tetrafluoroethylene) nanofibers. Journal of Rheology, 2014, 58, 589-605.	1.3	27
41	Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 2015, 46, 79-87.	2.3	27
42	Influence of thermal history on the nonisothermal crystallization of poly(L-lactide). Journal of Applied Polymer Science, 2007, 105, 282-290.	1.3	24
43	Plasticization of polylactide with block copolymers of ethylene glycol and propylene glycol. Journal of Applied Polymer Science, 2012, 125, 4292-4301.	1.3	24
44	Effect of negative pressure on melting behavior of spherulites in thin films of several crystalline polymers. Journal of Applied Polymer Science, 1999, 74, 1380-1385.	1.3	23
45	Crystallization of isotactic polypropylene and high-density polyethylene under negative pressure resulting from uncompensated volume change. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 1285-1291.	2.4	22
46	Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing, 2015, 41, 209-218.	2.3	21
47	Method of determining the kinetics of spherulite primary nucleation from the truncation of spherulites. Polymer Bulletin, 1979, 1, 275-279.	1.7	20
48	Modeling of crystallization kinetics in fiber reinforced composites. Macromolecular Symposia, 2001, 169, 143-148.	0.4	20
49	Spherulitic structure development during crystallization in confined space II. Effect of spherulite nucleation at borders. Journal of Applied Polymer Science, 2005, 97, 2319-2329.	1.3	20
50	The role of nucleating agents in high-pressure-induced gamma crystallization in isotactic polypropylene. Colloid and Polymer Science, 2015, 293, 665-675.	1.0	20
51	Modification of dual-component fibrous materials with carbon nanotubes and methyltrichlorosilane. Materials and Design, 2019, 162, 219-228.	3.3	20
52	Statistical approach to the description of spherulite patterns. Two-and three-dimensional cases. Colloid and Polymer Science, 1983, 261, 1-8.	1.0	19
53	Polylactide composites with waste cotton fibers: Thermal and mechanical properties. Polymer Composites, 2014, 35, 747-751.	2.3	19
54	Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. European Polymer Journal, 2016, 85, 564-574.	2.6	18

#	Article	IF	CITATIONS
55	Nonisothermal Crystallization of Polymers. 1. The Background of the Mathematical Description of Spherulitic Pattern Formation. The Journal of Physical Chemistry, 1995, 99, 14007-14015.	2.9	17
56	Nonisothermal shear-induced crystallization of polypropylene-based composite materials with montmorillonite. European Polymer Journal, 2013, 49, 2109-2119.	2.6	17
57	Electrically conductive composite textiles modified with graphene using sol-gel method. Journal of Alloys and Compounds, 2019, 784, 22-28.	2.8	17
58	High Pressure Crystallization of HDPE Droplets. Macromolecules, 2008, 41, 8086-8094.	2.2	16
59	Nucleation of isotactic polypropylene crystallization by gold nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 469-478.	2.4	16
60	Nonisothermal Crystallization of Polymers. 2. The Mathematical Description of Spherulitic Pattern Formation. The Journal of Physical Chemistry, 1995, 99, 14016-14023.	2.9	15
61	Nonisothermal crystallization of polymers in samples of finite dimensions. Colloid and Polymer Science, 1997, 275, 1046-1059.	1.0	15
62	Modeling of polymer crystallization in a temperature gradient. Journal of Applied Polymer Science, 2002, 86, 1351-1362.	1.3	15
63	Conductive cotton fabric through thermal reduction of graphene oxide enhanced by commercial antioxidants used in the plastics industry. Cellulose, 2019, 26, 2191-2199.	2.4	15
64	Crystallization, structure and properties of polylactide/ladder poly(silsesquioxane) blends. Polymer, 2020, 201, 122563.	1.8	15
65	Antibacterial Electroconductive Composite Coating of Cotton Fabric. Materials, 2022, 15, 1072.	1.3	15
66	The effect of halloysite nanotubes and N,N'- ethylenebis (stearamide) on the properties of polylactide nanocomposites with amorphous matrix. Polymer Testing, 2017, 61, 35-45.	2.3	14
67	Nonisothermal Crystallization of Polymers. 3. The Mathematical Description of the Final Spherulitic Pattern. The Journal of Physical Chemistry, 1995, 99, 14024-14031.	2.9	13
68	Multifunctional polylactide nonwovens with 3D network of multiwall carbon nanotubes. Applied Surface Science, 2020, 527, 146898.	3.1	13
69	Influence of sample thickness and surface nucieation on i-PP crystallization kinetics in DSC measurements. Polimery, 2003, 48, 790-799.	0.4	13
70	Method of determining the kinetics of spherulite primary nucleation from the spherulite shapes in bulk samples. Polymer Bulletin, 1980, 2, 1-6.	1.7	12
71	Influence of solid particles on cavitation in poly(methylene oxide) during crystallization. Journal of Applied Polymer Science, 2007, 105, 1053-1062.	1.3	12
72	Conductive and superhydrophobic cotton fabric through pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) assisted thermal reduction of graphene oxide and modification with methyltrichlorosilane. Cellulose, 2018, 25, 5377-5388.	2.4	12

#	Article	IF	CITATIONS
73	On the structure and nucleation mechanism in nucleated isotactic polypropylene crystallized under high pressure. Polymer, 2018, 151, 179-186.	1.8	12
74	Electrically conductive and hydrophobic rGO-containing organosilicon coating of cotton fabric. Progress in Organic Coatings, 2019, 137, 105312.	1.9	12
75	Nucleation and crystallization of random aliphatic-butylene terephtalate copolyester. European Polymer Journal, 2015, 71, 289-303.	2.6	11
76	Crystallization kinetics of polymer fibrous nanocomposites. European Polymer Journal, 2016, 83, 181-201.	2.6	11
77	Overview of Biobased Polymers. Advances in Polymer Science, 2019, , 1-35.	0.4	11
78	Modeling of polymer crystallization in plates, pipes, and rods during cooling. Journal of Applied Polymer Science, 2002, 86, 1363-1372.	1.3	10
79	High-pressure crystallization of isotactic polypropylene droplets. Colloid and Polymer Science, 2012, 290, 1599-1607.	1.0	10
80	The effect of halloysite nanotubes and N,N′-ethylenebis (stearamide) on morphology and properties of polylactide nanocomposites with crystalline matrix. Polymer Testing, 2017, 64, 83-91.	2.3	10
81	High-Pressure Crystallization of iPP Nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol. Polymers, 2021, 13, 145.	2.0	10
82	Heat conduction anisotropy of drawn high density polyethylene samples. Colloid and Polymer Science, 1982, 260, 735-741.	1.0	9
83	Polypropylene Nanocomposites – Preparation and Properties. Solid State Phenomena, 2003, 94, 335-338.	0.3	9
84	Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. Journal of Macromolecular Science - Physics, 2016, 55, 393-410.	0.4	9
85	Crystallization of star-shaped and linear poly(l-lactide)s. European Polymer Journal, 2018, 105, 126-134.	2.6	9
86	The influence of crystallization conditions on the macromolecular structure and strength of Î ³ -polypropylene. Thermochimica Acta, 2019, 677, 131-138.	1.2	9
87	Shear-induced non-isothermal crystallization of poly(butylene adipate-co-terephthalate). Polymer Testing, 2020, 85, 106420.	2.3	9
88	Thermal effects due to polymer crystallization. Journal of Applied Polymer Science, 1997, 66, 1015-1028.	1.3	8
89	Novel Tough Crystalline Blends of Polylactide with Ethylene Glycol Derivative of POSS. Journal of Polymers and the Environment, 2018, 26, 145-151.	2.4	8
90	Toughening of syndiotactic polypropylene with chalk. Journal of Applied Polymer Science, 2016, 133, .	1.3	7

EWA PIORKOWSKA

#	Article	IF	CITATIONS
91	Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical) Tj ETQq1 1	0,784314	rgBT /Over
92	Measurements of thermal conductivity of materials using a transient technique. I. Theoretical background. Journal of Applied Physics, 1986, 60, 485-492.	1.1	6
93	Influence of the liberation of heat of fusion on the temperature near the crystallization front in polymers. Polymer, 1992, 33, 3985-3989.	1.8	6
94	Antibacterial electroconductive <scp>rGO</scp> modified cotton fabric. Polymers for Advanced Technologies, 2021, 32, 3975-3981.	1.6	6
95	Nanocomposites of polypropylene and polyethylene with montmorillonite type clays. Polimery, 2004, 49, 240-247.	0.4	6
96	Structure, thermal and mechanical properties of polypropylene composites with nano- and micro-diamonds. Polimery, 2015, 60, 331-336.	0.4	6
97	Morphology of iPP spherulites crystallized in a temperature gradient. Journal of Applied Polymer Science, 2002, 86, 1318-1328.	1.3	5
98	Spherulitic structure development during crystallization in a finite volume. Journal of Applied Polymer Science, 2002, 86, 1373-1385.	1.3	5
99	Stiff Biodegradable Polylactide Composites with Ultrafine Cellulose Filler. Journal of Polymers and the Environment, 2017, 25, 74-80.	2.4	5
100	Supramolecular interactions involving fluoroaryl groups in hybrid blends of polylactide and ladder polysilsesquioxanes. Polymer Testing, 2021, 94, 107033.	2.3	5
101	Modification of Polylactide Nonwovens with Carbon Nanotubes and Ladder Poly(silsesquioxane). Molecules, 2021, 26, 1353.	1.7	5
102	Influence of compatibilizer type, polypropylene molecular weigth and blending sequence on montmorillonite exfoliation in nanocomposites. Polimery, 2004, 49, 52-55.	0.4	5
103	Nucleation of Polypropylene with Gold Nanoparticles. Part 1: Introduction of Sandwich Method for Evaluation of Very Weak Nucleation Activity. Journal of Macromolecular Science - Physics, 2010, 49, 392-404.	0.4	4
104	Solution electrospinning and properties of poly(ethylene 2,5-furandicarboxylate) fibers. Polymer Testing, 2022, 113, 107677.	2.3	4
105	Measurements of thermal conductivity of materials using a transient technique. II. Description of the apparatus. Journal of Applied Physics, 1986, 60, 493-498.	1.1	3
106	Nucleated crystallization of isotactic polypropylene in multilayered sandwich nanocomposites with gold particles. Journal of Applied Polymer Science, 2012, 125, 4338-4346.	1.3	3
107	Significant modification of the surface morphology of polylactide (PLA) and PLA-halloysite nanocomposites in the presence of N,N'-ethylenebis(stearamide) upon thermal treatment. EXPRESS Polymer Letters, 2020, 14, 1155-1168.	1.1	3
108	Methods of measurements of thermal conductivity coefficient of polymers. Part I. Indirect methods. Polimery, 1985, 30, 181-184.	0.4	3

#	Article	IF	CITATIONS
109	Modification of physical properties of polylactide. Polimery, 2005, 50, 562-569.	0.4	3
110	Plasticization of polylactide. Polimery, 2009, 54, 083-090.	0.4	3
111	Crystallization of Polymers in a Temperature Gradient. International Journal of Forming Processes, 2004, 7, 195-208.	0.3	3
112	Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical) Tj ETQq0 0 1485-1501.	0 rgBT /Ov 0.9	verlock 10 T 3
113	Crystallization of Isotactic Polypropylene Nanocomposites with Fibrillated Poly(tetrafluoroethylene) under Elevated Pressure. Polymers, 2022, 14, 88.	2.0	3
114	New Possibilities in the Description of Overall Crystallization of Polymers. Journal of Macromolecular Science - Physics, 2003, 42, 773-792.	0.4	2
115	Thermal conductivity of polymers. Polimery, 1985, 30, 136-141.	0.4	2
116	Modeling and computer simulations of spherulitic crystallization of polymers. Polimery, 2001, 46, 323-334.	0.4	2
117	Spherulite nucleation density from thin sections of bulk samples. Polimery, 2004, 49, 698-705.	0.4	2
118	Investigation on the Melt Processing of Biodegradable Aliphatic-Aromatic Polyester into Fibrous Products. Fibres and Textiles in Eastern Europe, 2016, 24, 58-64.	0.2	2
119	Shear-Induced Crystallization of Star and Linear Poly(L-lactide)s. Molecules, 2021, 26, 6601.	1.7	2
120	Phase Structure and Properties of Ternary Polylactide/Poly(methyl methacrylate)/Polysilsesquioxane Blends. Polymers, 2021, 13, 1033.	2.0	1
121	Collagen precipitation on tendon collagen fibrils. Acta Polymerica, 1981, 32, 486-488.	1.4	0
122	The influence of chemical composition of aliphatic-aromatic copolyesters on their properties. , 2014, ,		0
123	Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical) Tj ETQq1 1	0,784314	rgBT /Over

124 Structure, processing and performance of ultra-high molecular weight polyethylene (IUPAC Technical) Tj ETQq0 0 0 0 BT /Overlock 10 Tf