Lisa Granchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of kneading machine type and total element revolutions on dough rheology and bread characteristics: A focus on straight dough and indirect (biga) methods. LWT - Food Science and Technology, 2022, 153, 112500.	2.5	19
2	Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. International Dairy Journal, 2022, 127, 105284.	1.5	26
3	Validation of a Standard Protocol to Assess the Fermentative and Chemical Properties of Saccharomyces cerevisiae Wine Strains. Frontiers in Microbiology, 2022, 13, 830277.	1.5	6
4	Characterization of the microbial community in ripened Pecorino Toscano cheese affected by pink discoloration. Food Microbiology, 2022, 104, 104006.	2.1	6
5	Effect of consumption of ancient grain bread leavened with sourdough or with baker's yeast on cardio-metabolic risk parameters: a dietary intervention trial. International Journal of Food Sciences and Nutrition, 2021, 72, 367-374.	1.3	9
6	Bioactive Properties of Breads Made with Sourdough of Hull-Less Barley or Conventional and Pigmented Wheat Flours. Applied Sciences (Switzerland), 2021, 11, 3291.	1.3	10
7	Influence of different leavening agents on technological and nutritional characteristics of whole grain breads obtained from ancient and modern flour varieties. European Food Research and Technology, 2021, 247, 1701-1710.	1.6	8
8	<i>In situ</i> dextran synthesis by <i>Weissella confusa</i> Ck15 and <i>Leuconostoc pseudomesenteroides</i> DSM 20193 and their effect on chickpea sourdough bread. International Journal of Food Science and Technology, 2021, 56, 5277-5285.	1.3	8
9	Selection of Indigenous Saccharomyces cerevisiae Strains and Exploitation of a Pilot-Plant to Produce Fresh Yeast Starter Cultures in a Winery. Fermentation, 2021, 7, 99.	1.4	4
10	Indigenous Aureobasidium pullulans Strains as Biocontrol Agents of Botrytis cinerea on Grape Berries. Sustainability, 2021, 13, 9389.	1.6	11
11	Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Research International, 2020, 138, 109785.	2.9	38
12	Technological Feature Assessment of Lactic Acid Bacteria Isolated from Cricket Powder's Spontaneous Fermentation as Potential Starters for Cricket-Wheat Bread Production. Foods, 2020, 9, 1322.	1.9	17
13	Antioxidant Properties of Sourdoughs Made with Whole Grain Flours of Hull-Less Barley or Conventional and Pigmented Wheat and by Selected Lactobacilli Strains. Foods, 2020, 9, 640.	1.9	17
14	Antioxidant and anti-inflammatory properties of sourdoughs containing selected Lactobacilli strains are retained in breads. Food Chemistry, 2020, 322, 126710.	4.2	27
15	Influence of sequential inoculum of <i>Starmerella bacillaris</i> and <i>Saccharomyces cerevisiae</i> on flavonoid composition of monovarietal Sangiovese wines. Yeast, 2020, 37, 549-557.	0.8	8
16	Exploitation of sourdough lactic acid bacteria to reduce raffinose family oligosaccharides (RFOs) content in breads enriched with chickpea flour. European Food Research and Technology, 2019, 245, 2353-2363.	1.6	14
17	Extra Virgin Olive Oil Quality as Affected by Yeast Species Occurring in the Extraction Process. Foods, 2019, 8, 457.	1.9	8
18	The Biodiversity of Saccharomyces cerevisiae in Spontaneous Wine Fermentation: The Occurrence and Persistence of Winery-Strains. Fermentation, 2019, 5, 86.	1.4	17

LISA GRANCHI

#	Article	IF	CITATIONS
19	Liquid and firm sourdough fermentation: microbial robustness and interactions during consecutive backsloppings. LWT - Food Science and Technology, 2019, 105, 9-15.	2.5	35
20	Use of Selected Lactobacilli to Increase γ-Aminobutyric Acid (GABA) Content in Sourdough Bread Enriched with Amaranth Flour. Foods, 2019, 8, 218.	1.9	34
21	Development of new microalgae-based sourdough "crostini†functional effects of Arthrospira platensis (spirulina) addition. Scientific Reports, 2019, 9, 19433.	1.6	56
22	Wine Yeasts and Consumer Health. , 2019, , 343-373.		2
23	Bread wastes to energy: Sequential lactic and photo-fermentation for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 9569-9576.	3.8	51
24	Beta-glucosidase and esterase activity from Oenococcus oeni: Screening and evaluation during malolactic fermentation in harsh conditions. LWT - Food Science and Technology, 2018, 89, 262-268.	2.5	17
25	Quantifying the Effects of Ethanol and Temperature on the Fitness Advantage of Predominant Saccharomyces cerevisiae Strains Occurring in Spontaneous Wine Fermentations. Frontiers in Microbiology, 2018, 9, 1563.	1.5	32
26	Impact of Saccharomyces cerevisiae Strains on Health-Promoting Compounds in Wine. Fermentation, 2018, 4, 26.	1.4	20
27	Effect of selected strains of lactobacilli on the antioxidant and anti-inflammatory properties of sourdough. International Journal of Food Microbiology, 2018, 286, 55-65.	2.1	40
28	Amino Acid Metabolisms and Production of Biogenic Amines and Ethyl Carbamate. , 2017, , 231-253.		5
29	Selection of Autochthonous Bacterial Starters to Produce Typical Italian Dry-Fermented Sausages with Low Biogenic Amine Content. Advances in Biotechnology & Microbiology (Newbury, Calif), 2017, 3, .	0.1	0
30	Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Frontiers in Microbiology, 2016, 7, 1018.	1.5	48
31	Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany. World Journal of Microbiology and Biotechnology, 2016, 32, 93.	1.7	21
32	Control of mixing step in the bread production with weak wheat flour and sourdough. Journal of Agricultural Engineering, 2013, 44, .	0.7	8
33	Typing of Lactobacillus sanfranciscensis isolates from traditional sourdoughs by combining conventional and multiplex RAPD–PCR profiles. International Journal of Food Microbiology, 2012, 156, 122-126.	2.1	31
34	Amino Acid Metabolisms and Production of Biogenic Amines and Ethyl Carbamate. , 2009, , 167-180.		6
35	Putrescine Accumulation in Wine: Role of Oenococcus oeni. Current Microbiology, 2005, 51, 6-10.	1.0	46
36	Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. International Journal of Food Microbiology, 2003, 83, 1-14.	2.1	53

LISA GRANCHI

#	Article	IF	CITATIONS
37	The species-specific ratios of 2,3-butanediol and acetoin isomers as a tool to evaluate wine yeast performance. International Journal of Food Microbiology, 2003, 86, 163-168.	2.1	50
38	Biogenic Amine Production by Oenococcus oeni. Current Microbiology, 2002, 44, 374-378.	1.0	113
39	Effect of Oleic Acid on Oenococcus oeni Strains and Malolactic Fermentation in Wine. Current Microbiology, 2002, 44, 5-9.	1.0	24
40	Oenological properties ofHanseniaspora osmophilaandKloeckera corticisfrom wines produced by spontaneous fermentations of normal and dried grapes. FEMS Yeast Research, 2002, 2, 403-407.	1.1	36