List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6812999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International, 2000, 143, 99-112.	1.0	467
2	Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa. Journal of Geophysical Research, 2005, 110, .	3.3	182
3	Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophysical Journal International, 2010, 183, 1061-1076.	1.0	130
4	Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics, 2013, 609, 82-96.	0.9	125
5	Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities. Tectonophysics, 2003, 371, 1-21.	0.9	123
6	Gravity derived Moho for South America. Tectonophysics, 2013, 609, 456-467.	0.9	100
7	Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities. Geophysical Journal International, 2005, 162, 555-569.	1.0	99
8	Crustal thickness map of Brazil: Data compilation and main features. Journal of South American Earth Sciences, 2013, 43, 74-85.	0.6	95
9	Thin Lithosphere Beneath the Ethiopian Plateau Revealed by a Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions. Journal of Geophysical Research, 2007, 112, .	3.3	94
10	Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: Implications for Precambrian crustal evolution. Journal of Geophysical Research, 2009, 114, .	3.3	92
11	Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	87
12	Constraining velocity and density contrasts across the crust-mantle boundary with receiver function amplitudes. Geophysical Journal International, 2007, 171, 286-301.	1.0	82
13	Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation. Tectonophysics, 2013, 609, 250-266.	0.9	66
14	Thickness andVp/VsRatio Variation in the Iberian Crust. Geophysical Journal International, 2004, 156, 59-72.	1.0	62
15	Shear wave velocity structure of the lower crust in southern Africa: Evidence for compositional heterogeneity within Archaean and Proterozoic terrains. Journal of Geophysical Research, 2009, 114, .	3.3	59
16	Deep crustal structure of the ParanÃi Basin from receiver functions and Rayleighâ€wave dispersion: Evidence for a fragmented cratonic root. Journal of Geophysical Research, 2008, 113, .	3.3	56
17	Upper-mantle low-velocity zone structure beneath the Kaapvaal craton from <i>S</i> -wave receiver functions. Geophysical Journal International, 2009, 178, 1021-1027.	1.0	49
18	Using S wave receiver functions to estimate crustal structure beneath ice sheets: An application to the Transantarctic Mountains and East Antarctic craton. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	49

#	Article	IF	CITATIONS
19	The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield. Tectonophysics, 2016, 680, 8-27.	0.9	43
20	Moho depths and Poisson's ratios of Precambrian crust in East Africa: Evidence for similarities in Archean and Proterozoic crustal structure. Earth and Planetary Science Letters, 2012, 355-356, 73-81.	1.8	39
21	The mantle transition zone beneath <scp>W</scp> est <scp>A</scp> ntarctica: Seismic evidence for hydration and thermal upwellings. Geochemistry, Geophysics, Geosystems, 2015, 16, 40-58.	1.0	38
22	Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis. Geophysical Journal International, 2015, 202, 533-547.	1.0	33
23	Evaluation of Deep Sediment Velocity Structure in the New Madrid Seismic Zone. Bulletin of the Seismological Society of America, 2004, 94, 334-340.	1.1	31
24	Source Mechanisms of Mine-Related Seismicity, Savuka Mine, South Africa. Bulletin of the Seismological Society of America, 2009, 99, 2801-2814.	1.1	31
25	The structure of the crust and uppermost mantle beneath Madagascar. Geophysical Journal International, 2017, 210, 1525-1544.	1.0	29
26	Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subductionâ€Related Magmatism in the Overriding Plate. Journal of Geophysical Research: Solid Earth, 2018, 123, 1459-1485.	1.4	29
27	An Updated Crustal Thickness Map of Central South America Based on Receiver Function Measurements in the Region of the Chaco, Pantanal, and ParanÃ _i Basins, Southwestern Brazil. Journal of Geophysical Research: Solid Earth, 2019, 124, 8491-8505.	1.4	27
28	Crustal Vp-Vs ratios and thickness for Ross Island and the Transantarctic Mountain front, Antarctica. Geophysical Journal International, 2011, 185, 85-92.	1.0	26
29	Crustal structure of the eastern Borborema Province, NE Brazil, from the joint inversion of receiver functions and surface wave dispersion: Implications for plateau uplift. Journal of Geophysical Research: Solid Earth, 2015, 120, 3848-3869.	1.4	26
30	Bulk crustal properties of the Borborema Province, NE Brazil, from P-wave receiver functions: Implications for models of intraplate Cenozoic uplift. Tectonophysics, 2015, 644-645, 81-91.	0.9	26
31	Rayleigh-Wave, Group-Velocity Tomography of the Borborema Province, NE Brazil, from Ambient Seismic Noise. Pure and Applied Geophysics, 2015, 172, 1429-1449.	0.8	25
32	Lithospheric thinning under the Araripe Basin (NE Brazil) from a long-period magnetotelluric survey: Constraints for tectonic inversion. Gondwana Research, 2019, 68, 174-184.	3.0	24
33	Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths. Geophysical Journal International, 2017, 211, 1328-1340.	1.0	23
34	Cratonic basin formation: a case study of the ParnaÃba Basin of Brazil. Geological Society Special Publication, 2018, 472, 1-15.	0.8	23
35	Shear Velocity Structure Beneath Saudi Arabia From the Joint Inversion of <i>P</i> and <i>S</i> Wave Receiver Functions, and Rayleigh Wave Group Velocity Dispersion Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 4767-4787.	1.4	22
36	Shear wave velocity structure of the Bushveld Complex, South Africa. Tectonophysics, 2012, 554-557, 83-104.	0.9	21

#	Article	IF	CITATIONS
37	ESTIMATES OF CRUSTAL AND LITHOSPHERIC THICKNESS IN SUB-SAHARAN AFRICA FROM S-WAVE RECEIVER FUNCTIONS. South African Journal of Geology, 2009, 112, 229-240.	0.6	20
38	Upper mantle anisotropy of the Borborema Province, NE Brazil: Implications for intra-plate deformation and sub-cratonic asthenospheric flow. Tectonophysics, 2015, 657, 81-93.	0.9	20
39	Crustal thickness variations in northern Morocco. Journal of Geophysical Research, 2012, 117, .	3.3	19
40	Crustal architecture of the Borborema Province, NE Brazil, from receiver function CCP stacks: Implications for Mesozoic stretching and Cenozoic uplift. Tectonophysics, 2015, 649, 68-80.	0.9	19
41	Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions. Tectonophysics, 2016, 676, 250-260.	0.9	19
42	Probing the upper mantle transition zone under Africa with P520s conversions: Implications for temperature and composition. Earth and Planetary Science Letters, 2013, 368, 151-162.	1.8	18
43	Deviatoric Moment Tensor Solutions from Spectral Amplitudes in Surface Network Recordings: Case Study in São Caetano, Pernambuco, Brazil. Bulletin of the Seismological Society of America, 2017, 107, 1495-1511.	1.1	16
44	Seismic signature of intracrustal magmatic intrusions in the Eastern Betics (Internal Zone), SE Iberia. Geophysical Research Letters, 2005, 32, .	1.5	15
45	S-WAVE VELOCITY STRUCTURE OF THE CRUST AND UPPER MANTLE BENEATH KENYA IN COMPARISON TO TANZANIA AND ETHIOPIA: IMPLICATIONS FOR THE FORMATION OF THE EAST AFRICAN AND ETHIOPIAN PLATEAUS. South African Journal of Geology, 2009, 112, 241-250.	0.6	15
46	Normal thickness of the upper mantle transition zone in NE Brazil does not favour mantle plumes as origin for intraplate Cenozoic volcanism. Geophysical Journal International, 2014, 199, 996-1005.	1.0	12
47	Crustal structure of the Khartoum Basin, Sudan. Tectonophysics, 2013, 593, 151-160.	0.9	10
48	Deep crustal architecture of the ParnaÃba basin of NE Brazil from receiver function analysis: implications for basin subsidence. Geological Society Special Publication, 2018, 472, 83-100.	0.8	8
49	Lithospheric and sublithospheric deformation under the Borborema Province of northeastern Brazil from receiver function harmonic stripping. Solid Earth, 2019, 10, 893-905.	1.2	7
50	Upper mantle structure of the Borborema Province, NE Brazil, from P-wave tomography: Implications for rheology and volcanism. Geophysical Journal International, 0, , .	1.0	6
51	Crustal and lithospheric structure of inactive volcanic arc terrains in Fiji. Tectonophysics, 2019, 750, 394-403.	0.9	6
52	Lithospheric structure of the western Borborema Province from receiver functions and surface-wave dispersion: Implications for basin inversion. Tectonophysics, 2021, 816, 229024.	0.9	6
53	Prominent thermal anomalies in the mantle transition zone beneath the Transantarctic Mountains. Geology, 2020, 48, 748-752.	2.0	5
54	Joint inversion of receiver functions and surface wave dispersion in the Recôncavo–Tucano basin of NE Brazil: implications for basin formation. Geophysical Journal International, 2022, 230, 317-333.	1.0	5

#	Article	IF	CITATIONS
55	Shearâ€Wave Velocity Structure Beneath Northeast China From Joint Inversion of Receiver Functions and Rayleigh Wave Phase Velocities: Implications for Intraplate Volcanism. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	5
56	A WADATI FILTER FOR MINE-INDUCED SEISMICITY. South African Journal of Geology, 2009, 112, 371-380.	0.6	4
57	Joint Inversion of High-Frequency Receiver Functions and Surface-Wave Dispersion: Case Study in the ParnaÃba Basin of Northeast Brazil. Bulletin of the Seismological Society of America, 2020, 110, 1372-1386.	1.1	4
58	Joint Inversion of Receiver Functions and Surfaceâ€Wave Dispersion in the Pantanal Wetlands: Implications for Basin Formation. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018337.	1.4	3
59	Crustal and Upper-Mantle Structure Beneath Saudi Arabia from Receiver Functions and Surface Wave Analysis. , 2019, , 307-322.		2
60	Crustal seismic structure and anisotropy of Madagascar and southeastern Africa using receiver function harmonics: interplay of inherited local heterogeneities and current regional stress. Geophysical Journal International, 2021, 226, 660-675.	1.0	1
61	Ambient Noise Tomography with Short-Period Stations: Case Study in the Borborema Province. Pure and Applied Geophysics, 2021, 178, 1709-1730.	0.8	1
62	Lithospheric anisotropy of Northeast Brazil from receiver function analysis. , 2017, , .		0
63	Bayesian Inversion of Receiver Functions and Surface Wave Dispersion Data in the Brazilian Northeast. , 2017, , .		0