List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6812883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Performance of Tire-Derived Aggregate Permeable Pavements Under Live Traffic Loads. Lecture Notes in Civil Engineering, 2022, , 515-528.	0.4	Ο
2	Compressibility Behavior of Soft–Rigid Granular Mixtures Bound with Polyurethane Binder. International Journal of Geomechanics, 2022, 22, .	2.7	2
3	Recycled Aggregate Mixtures for Backfilling Sewer Trenches in Nontrafficable Areas. International Journal of Geomechanics, 2022, 22, .	2.7	11
4	Battered minipile response to low-frequency cyclic lateral loading in very dense sand. Acta Geotechnica, 2022, 17, 4033-4050.	5.7	3
5	Post-erosion mechanical response of internally unstable soil of varying size and flow regime. Canadian Geotechnical Journal, 2021, 58, 531-539.	2.8	14
6	Suitability of swelling and collapse theory proposed based on virgin compression surface. Soils and Foundations, 2021, 61, 113-128.	3.1	6
7	A prediction model for the loading-wetting volumetric behavior of unsaturated granular materials. Soils and Foundations, 2021, 61, 623-641.	3.1	4
8	Lightly Stabilized Loose Sands with Alkali-Activated Fly Ash in Deep Mixing Applications. International Journal of Geomechanics, 2021, 21, .	2.7	11
9	Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters. International Journal of Heat and Mass Transfer, 2021, 170, 120997.	4.8	26
10	Experimental and Analytical Investigation of a RC Wall with a Gabion Cushion Subjected to Boulder Impact. International Journal of Impact Engineering, 2021, 151, 103823.	5.0	10
11	Impact of particle shape on networks in sands. Computers and Geotechnics, 2021, 137, 104258.	4.7	6
12	Performance evaluation of semi-flexible permeable pavements under cyclic loads. International Journal of Pavement Engineering, 2020, 21, 336-346.	4.4	28
13	Network analysis of heat transfer in sphere packings. Powder Technology, 2020, 362, 790-804.	4.2	14
14	Effect of Swell–Shrink Cycles on Volumetric Behavior of Compacted Expansive Clay Stabilized Using Lime. International Journal of Geomechanics, 2020, 20, 04020212.	2.7	11
15	Field performance monitoring of waste tire-based permeable pavements. Transportation Geotechnics, 2020, 24, 100384.	4.5	15
16	Impact of suffusion on the cyclic and post-cyclic behaviour of an internally unstable soil. Geotechnique Letters, 2019, 9, 218-224.	1.2	10
17	Impact of three-dimensional sphericity and roundness on heat transfer in granular materials. Powder Technology, 2019, 355, 770-781.	4.2	25
18	Utilization of Alkali-Activated Fly Ash for Construction of Deep Mixed Columns in Loose Sands. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	24

#	Article	IF	CITATIONS
19	Quantifying the impact of rigid interparticle structures on heat transfer in granular materials using networks. International Journal of Heat and Mass Transfer, 2019, 143, 118514.	4.8	17
20	Small-Strain Behavior of Cement-Stabilized Recycled Concrete Aggregate in Pavement Base Layers. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	30
21	Development of a void ratio-moisture ratio-net stress framework for the prediction of the volumetric behavior of unsaturated granular materials. Soils and Foundations, 2019, 59, 443-457.	3.1	12
22	Impact of field conditions on the strength development of a geopolymer stabilized marine clay. Applied Clay Science, 2019, 167, 33-42.	5.2	70
23	Mechanical behaviour and load bearing mechanism of high porosity permeable pavements utilizing recycled tire aggregates. Construction and Building Materials, 2018, 168, 794-804.	7.2	27
24	Progressive Internal Erosion in a Gap-Graded Internally Unstable Soil: Mechanical and Geometrical Effects. International Journal of Geomechanics, 2018, 18, .	2.7	37
25	Impact of compaction method on mechanical characteristics of unbound granular recycled materials. Road Materials and Pavement Design, 2018, 19, 912-934.	4.0	32
26	Displacement-Based Approach for the Assessment of Overturning Stability of Rectangular Rigid Barriers Subjected to Point Impact. Journal of Engineering Mechanics - ASCE, 2018, 144, .	2.9	18
27	Post-breakage changes in particle properties using synchrotron tomography. Powder Technology, 2018, 325, 530-544.	4.2	25
28	Shear and Compression Characteristics of Recycled Glass-Tire Mixtures. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	27
29	Discussion of "Stress-Strain Behavior of Granular Soils Subjected to Internal Erosion―by C. Chen, L. M. Zhang, and D. S. Chang. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, 07017019.	3.0	0
30	Discussion of "Fines Classification Based on Sensitivity to Pore-Fluid Chemistry―by Junbong Jang and J. Carlos Santamarina. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	3.0	3
31	Impact of particle shape on breakage of recycled construction and demolition aggregates. Powder Technology, 2017, 308, 1-12.	4.2	102
32	Sustainable Usage of Construction and Demolition Materials in Roads and Footpaths. Springer Transactions in Civil and Environmental Engineering, 2017, , 3-13.	0.4	3
33	Changes to Grain Properties due to Breakage in a Sand Assembly using Synchrotron Tomography. EPJ Web of Conferences, 2017, 140, 07004.	0.3	5
34	Mechanical Consequences of Suffusion on Undrained Behaviour of a Gap-Graded Cohesionless Soil - An Experimental Approach. Geotechnical Testing Journal, 2017, 40, 20160145.	1.0	32
35	Impact of Compaction Methods on Resilient Response of Unsaturated Granular Pavement Material. Procedia Engineering, 2016, 143, 323-330.	1.2	11
36	Swell-shrink Cycles of Lime Stabilized Expansive Subgrade. Procedia Engineering, 2016, 143, 615-622.	1.2	37

#	Article	IF	CITATIONS
37	Strength Development and Microfabric Structure of Construction and Demolition Aggregates Stabilized with Fly Ash–Based Geopolymers. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	37
38	Stabilization of Demolition Materials for Pavement Base/Subbase Applications Using Fly Ash and Slag Geopolymers: Laboratory Investigation. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	107
39	Spent Coffee Grounds–Fly Ash Geopolymer Used as an Embankment Structural Fill Material. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	63
40	Discussion of "Development of an Internal Camera-Based Volume Determination System for Triaxial Testing―by S. E. Salazar, A. Barnes and R. A. Coffman. The Technical Note Was Published in <i>Geotechnical Testing Journal</i> , Vol. 38, No. 4, 2015. [DOI: 10.1520/GTJ20140249]. Geotechnical Testing Journal, 2016, 39, 20150153.	1.0	15
41	Engineering properties of lightweight cellular cemented clayâ^'fly ash material. Soils and Foundations, 2015, 55, 471-483.	3.1	32
42	Durability against wetting–drying cycles of sustainable Lightweight Cellular Cemented construction material comprising clay and fly ash wastes. Construction and Building Materials, 2015, 77, 41-49.	7.2	68
43	Laboratory Evaluation of the Use of Cement-Treated Construction and Demolition Materials in Pavement Base and Subbase Applications. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	151
44	Engineering and environmental properties of foamed recycled glass as a lightweight engineering material. Journal of Cleaner Production, 2015, 94, 369-375.	9.3	80
45	Modulus of rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends. Construction and Building Materials, 2015, 84, 146-155.	7.2	99
46	Geotechnical Properties of Lightly Stabilized Recycled Demolition Materials in Base/Sub-Base Applications. , 2015, , .		15
47	Engineering and Environmental Assessment of Recycled Construction and Demolition Materials Used with Geotextile for Permeable Pavements. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	36
48	Recycled construction and demolition materials in permeable pavement systems: geotechnical and hydraulic characteristics. Journal of Cleaner Production, 2015, 90, 183-194.	9.3	115
49	Deep Compaction of Granular Fills in a Land Reclamation Project by Dynamic and Vibratory Compaction Techniques. , 2015, , 263-274.		1
50	Densification of Land Reclamation Sands by Deep Vibratory Compaction Techniques. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	24
51	Recycled-Glass Blends in Pavement Base/Subbase Applications: Laboratory and Field Evaluation. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	64
52	Reclaimed Asphalt Pavement and Recycled Concrete Aggregate Blends in Pavement Subbases: Laboratory and Field Evaluation. Journal of Materials in Civil Engineering, 2014, 26, 349-357.	2.9	140
53	Evaluating the in-situ hydraulic conductivity of soft soil under land reclamation fills with the BAT permeameter. Engineering Geology, 2014, 168, 98-103.	6.3	24
54	Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 2014, 58, 245-257.	7.2	218

#	Article	IF	CITATIONS
55	Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials. Journal of Cleaner Production, 2014, 66, 75-84.	9.3	157
56	Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates. Construction and Building Materials, 2014, 68, 667-676.	7.2	150
57	Calcium carbide residue: Alkaline activator for clay–fly ash geopolymer. Construction and Building Materials, 2014, 69, 285-294.	7.2	183
58	Water-Void to Cement Ratio Identity of Lightweight Cellular-Cemented Material. Journal of Materials in Civil Engineering, 2014, 26, .	2.9	31
59	Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations. Journal of Cleaner Production, 2014, 72, 181-186.	9.3	69
60	Geotechnical Performance of Recycled Glass-Waste Rock Blends in Footpath Bases. Journal of Materials in Civil Engineering, 2013, 25, 653-661.	2.9	73
61	Piezometer measurements of prefabricated vertical drain improvement of soft soils under land reclamation fill. Engineering Geology, 2013, 162, 33-42.	6.3	32
62	Long-term settlement prediction for wastewater biosolids in road embankments. Resources, Conservation and Recycling, 2013, 77, 69-77.	10.8	25
63	Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering, 2013, 25, 1077-1088.	2.9	363
64	Resilient Moduli Response of Recycled Construction and Demolition Materials in Pavement Subbase Applications. Journal of Materials in Civil Engineering, 2013, 25, 1920-1928.	2.9	79
65	Laboratory Evaluation of the Geotechnical Characteristics of Wastewater Biosolids in Road Embankments. Journal of Materials in Civil Engineering, 2013, 25, 1682-1691.	2.9	41
66	Environmental risks of using recycled crushed glass in road applications. Journal of Cleaner Production, 2012, 20, 170-179.	9.3	133
67	Recycled crushed glass in road work applications. Waste Management, 2011, 31, 2341-2351.	7.4	154
68	Select chemical and engineering properties of wastewater biosolids. Waste Management, 2011, 31, 2522-2526.	7.4	55
69	Suitability of Using Recycled Glass-Crushed Rock Blends for Pavement Subbase Applications. , 2011, , .		22
70	Fine recycled glass: a sustainable alternative to natural aggregates. International Journal of Geotechnical Engineering, 2011, 5, 255-266.	2.0	26
71	In Situ Testing of Soft Soil at a Case Study Site with the Self-Boring Pressuremeter. Geotechnical Testing Journal, 2011, 34, 355-363.	1.0	1
72	Experiments and Dimensional Analysis of Waste Tire-Based Permeable Pavements. Geosynthetics International, 0, , 1-34.	2.9	4