## J Paul Knox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6812801/publications.pdf Version: 2024-02-01



ΙΡΛΙΙΚΝΟΥ

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 2001, 47, 9-27.                                                                                        | 2.0 | 891       |
| 2  | Pectin: new insights into an old polymer are starting to gel. Trends in Food Science and Technology, 2006, 17, 97-104.                                                                      | 7.8 | 707       |
| 3  | Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 1990, 181, 512-21.                                               | 1.6 | 602       |
| 4  | Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant<br>Cell Walls. Journal of Biological Chemistry, 2001, 276, 19404-19413.                   | 1.6 | 528       |
| 5  | Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry and<br>Cytochemistry, 2005, 53, 543-546.                                                       | 1.3 | 430       |
| 6  | Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-β-D-Galactan. Plant Physiology, 1997, 113, 1405-1412.                                 | 2.3 | 407       |
| 7  | An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydrate Research, 2009,<br>344, 1858-1862.                                                                        | 1.1 | 376       |
| 8  | Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant<br>Biology, 2008, 8, 60.                                                                  | 1.6 | 375       |
| 9  | Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant Journal, 1991, 1, 317-326.                           | 2.8 | 372       |
| 10 | Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydrate Research, 1998, 308,<br>149-152.                                                                           | 1.1 | 362       |
| 11 | Intercellular adhesion and cell separation in plants. Plant, Cell and Environment, 2003, 26, 977-989.                                                                                       | 2.8 | 329       |
| 12 | Singlet oxygen and plants. Phytochemistry, 1985, 24, 889-896.                                                                                                                               | 1.4 | 308       |
| 13 | High-throughput mapping of cell-wall polymers within and between plants using novel microarrays.<br>Plant Journal, 2007, 50, 1118-1128.                                                     | 2.8 | 286       |
| 14 | Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal<br>antibodies LM7, JIM5 and JIM7. Carbohydrate Research, 2003, 338, 1797-1800.                     | 1.1 | 277       |
| 15 | Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein<br>monoclonal antibodies. Glycobiology, 1996, 6, 131-139.                                   | 1.3 | 273       |
| 16 | Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Current Opinion in Structural Biology, 2013, 23, 669-677.      | 2.6 | 268       |
| 17 | Pectin: cell biology and prospects for functional analysis. , 2001, , 9-27.                                                                                                                 |     | 247       |
| 18 | Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO Journal, 1989, 8, 335-341. | 3.5 | 242       |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction<br>of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant Journal, 1996, 9, 919-925.                          | 2.8 | 228       |
| 20 | Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis, 2002, 23, 1754.                                                                                                                                                | 1.3 | 225       |
| 21 | A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants Journal of Cell Biology, 1989, 108, 1967-1977.                                                        | 2.3 | 223       |
| 22 | Understanding the Biological Rationale for the Diversity of Cellulose-directed Carbohydrate-binding<br>Modules in Prokaryotic Enzymes. Journal of Biological Chemistry, 2006, 281, 29321-29329.                                           | 1.6 | 221       |
| 23 | Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15293-15298. | 3.3 | 219       |
| 24 | Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant Journal, 2010, 64, 191-203.                                                                                                                     | 2.8 | 217       |
| 25 | Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta, 1996, 198, 452-459.                                                                                                    | 1.6 | 213       |
| 26 | The use of Antibodies to Study the Architecture and Developmental Regulation of Plant Cell Walls.<br>International Review of Cytology, 1997, 171, 79-120.                                                                                 | 6.2 | 213       |
| 27 | Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall<br>Research. Journal of Biological Chemistry, 2012, 287, 39429-39438.                                                                          | 1.6 | 207       |
| 28 | Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using<br>defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 2000,<br>327, 309-320.                  | 1.1 | 199       |
| 29 | Revealing the structural and functional diversity of plant cell walls. Current Opinion in Plant<br>Biology, 2008, 11, 308-313.                                                                                                            | 3.5 | 194       |
| 30 | Temporal and spatial regulation of pectic (14)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant Journal, 2000, 22, 105-113.                                                      | 2.8 | 192       |
| 31 | ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant Journal, 2010, 64, 764-774.                                                                      | 2.8 | 182       |
| 32 | Arabinogalactan Proteins Are Required for Apical Cell Extension in the Moss Physcomitrella patens.<br>Plant Cell, 2005, 17, 3051-3065.                                                                                                    | 3.1 | 179       |
| 33 | Sugar-coated microarrays: A novel slide surface for the high-throughput analysis of glycans.<br>Proteomics, 2002, 2, 1666-1671.                                                                                                           | 1.3 | 176       |
| 34 | Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex.<br>Plant Journal, 1994, 5, 237-246.                                                                                                  | 2.8 | 169       |
| 35 | Loss-of-Function Mutation of <i>REDUCED WALL ACETYLATION2</i> in Arabidopsis Leads to Reduced<br>Cell Wall Acetylation and Increased Resistance to <i>Botrytis cinerea</i> Â Â Â. Plant Physiology, 2011, 155,<br>1068-1078.              | 2.3 | 163       |
| 36 | High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconjugate Journal, 2008, 25, 37-48.                                 | 1.4 | 155       |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant Journal, 1999, 20, 619-628.                                                                | 2.8 | 150       |
| 38 | Comparative Analysis of Crystallinity Changes in Cellulose I Polymers Using ATR-FTIR, X-ray<br>Diffraction, and Carbohydrate-Binding Module Probes. Biomacromolecules, 2011, 12, 4121-4126.                      | 2.6 | 148       |
| 39 | In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta, 2001, 213, 37-44.                                                                           | 1.6 | 146       |
| 40 | Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB Journal, 1995, 9, 1004-1012.                                                                                          | 0.2 | 144       |
| 41 | Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant Journal, 2004, 40, 260-275.                                  | 2.8 | 144       |
| 42 | Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in theArabidopsisseedling<br>root meristem. Plant Journal, 2003, 33, 447-454.                                                      | 2.8 | 138       |
| 43 | Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant<br>Journal, 2009, 59, 413-425.                                                                              | 2.8 | 134       |
| 44 | Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall. Current Biology, 2016, 26, 2899-2906.                                                                                         | 1.8 | 131       |
| 45 | Altered Middle Lamella Homogalacturonan and Disrupted Deposition of (1→5)-α-l-Arabinan in the Pericarp<br>ofCnr, a Ripening Mutant of Tomato. Plant Physiology, 2001, 126, 210-221.                              | 2.3 | 127       |
| 46 | An epitope of rice threonine- and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma-membrane glycoproteins. Planta, 1995, 196, 510-22.                                              | 1.6 | 125       |
| 47 | Patterns of expression of the JIM4 arabinogalactan-protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L. Planta, 1990, 180, 285-92.                                              | 1.6 | 124       |
| 48 | Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4765-4770. | 3.3 | 123       |
| 49 | Cell Wall Biology: Perspectives from Cell Wall Imaging. Molecular Plant, 2011, 4, 212-219.                                                                                                                       | 3.9 | 118       |
| 50 | A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.<br>Plant Physiology, 2017, 175, 1094-1104.                                                                  | 2.3 | 117       |
| 51 | A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta, 2004, 218, 673-681.                                                                                                    | 1.6 | 116       |
| 52 | Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine:<br>Relationships with Lignification and Microfibril Orientation. Plant Physiology, 2012, 158, 642-653.                 | 2.3 | 115       |
| 53 | Cellulose and pectin localization in roots of mycorrhizalAllium porrum: labelling continuity between host cell wall and interfacial material. Planta, 1990, 180, 537-547.                                        | 1.6 | 112       |
| 54 | Cell adhesion, cell separation and plant morphogenesis. Plant Journal, 1992, 2, 137-141.                                                                                                                         | 2.8 | 112       |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Analytical Biochemistry, 2004, 326, 49-54.                                                                    | 1.1 | 111       |
| 56 | Involvement of Diamine Oxidase and Peroxidase in Insolubilization of the Extracellular Matrix:<br>Implications for Pea Nodule Initiation by Rhizobium leguminosarum. Molecular Plant-Microbe<br>Interactions, 2000, 13, 413-420. | 1.4 | 110       |
| 57 | Cell Walls of Developing Wheat Starchy Endosperm: Comparison of Composition and RNA-Seq<br>Transcriptome   Â. Plant Physiology, 2012, 158, 612-627.                                                                              | 2.3 | 110       |
| 58 | Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent<br>function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106,<br>3065-3070.          | 3.3 | 109       |
| 59 | Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan<br>block-specific antibodies from a naive phage display library. Plant Journal, 1999, 18, 57-65.                                 | 2.8 | 106       |
| 60 | The Cooperative Activities of CSLD2, CSLD3, and CSLD5 Are Required for Normal Arabidopsis<br>Development. Molecular Plant, 2011, 4, 1024-1037.                                                                                   | 3.9 | 106       |
| 61 | Spatial Regulation of Pectic Polysaccharides in Relation to Pit Fields in Cell Walls of Tomato Fruit<br>Pericarp. Plant Physiology, 2000, 122, 775-782.                                                                          | 2.3 | 105       |
| 62 | Cell wall evolution and diversity. Frontiers in Plant Science, 2012, 3, 152.                                                                                                                                                     | 1.7 | 99        |
| 63 | Characterisation of CRISPR mutants targeting genes modulating pectin degradation in ripening tomato. Plant Physiology, 2019, 179, pp.01187.2018.                                                                                 | 2.3 | 92        |
| 64 | Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of<br>bryophytes: new evidence for the multiple evolution of water onducting cells. New Phytologist,<br>2002, 156, 491-508.          | 3.5 | 91        |
| 65 | QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta, 2005, 222, 613-622.                                                         | 1.6 | 90        |
| 66 | The TOR Pathway Modulates the Structure of Cell Walls in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 1898-1908.                                                                                                                  | 3.1 | 89        |
| 67 | Making and using antibody probes to study plant cell walls. Plant Physiology and Biochemistry, 2000, 38, 27-36.                                                                                                                  | 2.8 | 85        |
| 68 | Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in<br>Tomato Fruit Pericarp Parenchyma. Molecular Plant, 2009, 2, 910-921.                                                           | 3.9 | 85        |
| 69 | Isolation and activity of the photodynamic pigment hypericin. Plant, Cell and Environment, 1985, 8,<br>19-25.                                                                                                                    | 2.8 | 84        |
| 70 | Distribution of cellâ€wall xylans in bryophytes and tracheophytes: new insights into basal<br>interrelationships of land plants. New Phytologist, 2005, 168, 231-240.                                                            | 3.5 | 84        |
| 71 | CsAGP1, a Gibberellin-Responsive Gene from Cucumber Hypocotyls, Encodes a Classical<br>Arabinogalactan Protein and Is Involved in Stem Elongation. Plant Physiology, 2003, 131, 1450-1459.                                       | 2.3 | 82        |
| 72 | A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies. Planta, 2006, 225, 485-498.                                                         | 1.6 | 79        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. Planta, 2012, 236, 115-128.                                                                                      | 1.6 | 79        |
| 74 | LRX Proteins Play a Crucial Role in Pollen Grain and Pollen Tube Cell Wall Development. Plant<br>Physiology, 2018, 176, 1981-1992.                                                                                                   | 2.3 | 79        |
| 75 | Xyloglucan is released by plants and promotes soil particle aggregation. New Phytologist, 2018, 217, 1128-1136.                                                                                                                      | 3.5 | 79        |
| 76 | Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan<br>protein-binding β-glucosyl Yariv reagent. Planta, 1998, 205, 32-38.                                                                    | 1.6 | 78        |
| 77 | Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta, 2002, 215, 440-447.                                                                                   | 1.6 | 74        |
| 78 | Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Plant Journal, 2009, 58, 413-422.                                                               | 2.8 | 72        |
| 79 | Regulation of pectic polysaccharide domains in relation to cell development and cell properties in the pea testa. Journal of Experimental Botany, 2002, 53, 707-713.                                                                 | 2.4 | 71        |
| 80 | A role for arabinogalactan proteins in gibberellinâ€induced αâ€amylase production in barley aleurone<br>cells. Plant Journal, 2002, 29, 733-741.                                                                                     | 2.8 | 67        |
| 81 | Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. Plant Journal, 2010, 64, 267-279.                                                                                        | 2.8 | 67        |
| 82 | Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta, 1998, 204, 252-259.                                      | 1.6 | 65        |
| 83 | Promotion of Testa Rupture during Garden Cress Germination Involves Seed Compartment-Specific<br>Expression and Activity of Pectin Methylesterases Â. Plant Physiology, 2014, 167, 200-215.                                          | 2.3 | 64        |
| 84 | ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3281-3290. | 3.3 | 64        |
| 85 | Distinct Cell Wall Architectures in Seed Endosperms in Representatives of the Brassicaceae and<br>Solanaceae   Â. Plant Physiology, 2012, 160, 1551-1566.                                                                            | 2.3 | 63        |
| 86 | Expression of Extracellular Glycoproteins in the Uninfected Cells of Developing Pea Nodule Tissue.<br>Molecular Plant-Microbe Interactions, 1991, 4, 563.                                                                            | 1.4 | 63        |
| 87 | Elicitors and defense gene induction in plants with altered lignin compositions. New Phytologist, 2018, 219, 1235-1251.                                                                                                              | 3.5 | 61        |
| 88 | Cell Wall Pectic Arabinans Influence the Mechanical Properties of Arabidopsis thaliana Inflorescence<br>Stems and Their Response to Mechanical Stress. Plant and Cell Physiology, 2013, 54, 1278-1288.                               | 1.5 | 60        |
| 89 | Targeted Modification of Homogalacturonan by Transgenic Expression of a Fungal Polygalacturonase<br>Alters Plant Growth. Plant Physiology, 2004, 135, 1294-1304.                                                                     | 2.3 | 59        |
| 90 | Distribution of pectic epitopes in cell walls of the sugar beet root. Planta, 2005, 222, 355-371.                                                                                                                                    | 1.6 | 59        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Complexity of the <i>Ruminococcus flavefaciens</i> cellulosome reflects an expansion in glycan recognition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7136-7141. | 3.3 | 58        |
| 92  | Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics. Plant<br>Physiology, 2018, 176, 1547-1558.                                                                           | 2.3 | 58        |
| 93  | Molecular probes for the plant cell surface. Protoplasma, 1992, 167, 1-9.                                                                                                                                          | 1.0 | 57        |
| 94  | Apical Dominance inPhaseolus vulgarisL Journal of Experimental Botany, 1984, 35, 239-244.                                                                                                                          | 2.4 | 56        |
| 95  | Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae. PLoS ONE, 2015, 10, e0118366.                                                                                                            | 1.1 | 56        |
| 96  | Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. New Phytologist, 2020, 225, 1461-1469.                                                           | 3.5 | 56        |
| 97  | In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis<br>sativa L Planta, 2008, 228, 1-13.                                                                          | 1.6 | 55        |
| 98  | Immunolocalization of LM2 arabinogalactan protein epitope associated with endomembranes of plant cells. Protoplasma, 2000, 212, 186-196.                                                                           | 1.0 | 54        |
| 99  | Immunolocalization of β-(1→4) and β-(1→6)-D-galactan epitopes in the cell wall and Golgi stacks of<br>developing flax root tissues. Protoplasma, 1998, 203, 26-34.                                                 | 1.0 | 53        |
| 100 | Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. Planta, 2015, 242, 1321-1334.                                                                        | 1.6 | 53        |
| 101 | Correlations between axial stiffness and microstructure of a species of bamboo. Royal Society Open Science, 2017, 4, 160412.                                                                                       | 1.1 | 50        |
| 102 | Understanding How the Complex Molecular Architecture of Mannan-degrading Hydrolases<br>Contributes to Plant Cell Wall Degradation. Journal of Biological Chemistry, 2014, 289, 2002-2012.                          | 1.6 | 47        |
| 103 | Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain. Planta, 2015, 241, 669-685.                                                                           | 1.6 | 47        |
| 104 | Photodynamic damage to plant leaf tissue by rose bengal. Plant Science Letters, 1984, 37, 3-7.                                                                                                                     | 1.9 | 46        |
| 105 | Immunogold localization of plant surface arabinogalactan-proteins using glycerol liquid substitution and scanning electron microscopy. Journal of Microscopy, 1999, 193, 150-157.                                  | 0.8 | 46        |
| 106 | Roles and regulation of plant cell walls surrounding plasmodesmata. Current Opinion in Plant<br>Biology, 2014, 22, 93-100.                                                                                         | 3.5 | 46        |
| 107 | Epitope detection chromatography: a method to dissect the structural heterogeneity and interâ€connections of plant cellâ€wall matrix glycans. Plant Journal, 2014, 78, 715-722.                                    | 2.8 | 46        |
| 108 | Recognition of xyloglucan by the crystalline celluloseâ€binding site of a family 3a carbohydrateâ€binding module. FEBS Letters, 2015, 589, 2297-2303.                                                              | 1.3 | 46        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Analysis of the distribution of copper amine oxidase in cell walls of legume seedlings. Planta, 2001, 214, 37-45.                                                                                          | 1.6 | 45        |
| 110 | Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: Evidence for sub-populations in fruit parenchyma systems. Food Chemistry, 2018, 246, 275-285.                              | 4.2 | 44        |
| 111 | Monoclonal Antibodies, Carbohydrate-Binding Modules, and the Detection of Polysaccharides in<br>Plant Cell Walls. Methods in Molecular Biology, 2011, 715, 103-113.                                        | 0.4 | 43        |
| 112 | Pectin Methylesterases Modulate Plant Homogalacturonan Status in Defenses against the Aphid<br><i>Myzus persicae</i> . Plant Cell, 2019, 31, 1913-1929.                                                    | 3.1 | 43        |
| 113 | Heterogeneity and Glycan Masking of Cell Wall Microstructures in the Stems of Miscanthus x giganteus, and Its Parents M. sinensis and M. sacchariflorus. PLoS ONE, 2013, 8, e82114.                        | 1.1 | 42        |
| 114 | Use of monoclonal antibodies to separate the enantiomers of abscisic acid. Analytical Biochemistry, 1986, 155, 92-94.                                                                                      | 1.1 | 41        |
| 115 | Sequential cell wall transformations in response to the induction of a pedicel abscission event in <i>Euphorbia pulcherrima</i> (poinsettia). Plant Journal, 2008, 54, 993-1003.                           | 2.8 | 41        |
| 116 | Low Sugar Is Not Always Good: Impact of Specific <i>O</i> -Glycan Defects on Tip Growth in Arabidopsis. Plant Physiology, 2015, 168, 808-813.                                                              | 2.3 | 41        |
| 117 | Elucidating the role of polygalacturonase genes in strawberry fruit softening. Journal of<br>Experimental Botany, 2020, 71, 7103-7117.                                                                     | 2.4 | 41        |
| 118 | Cereal root exudates contain highly structurally complex polysaccharides with soilâ€binding properties. Plant Journal, 2020, 103, 1666-1678.                                                               | 2.8 | 41        |
| 119 | Immunoprofiling of Pectic Polysaccharides. Analytical Biochemistry, 1999, 268, 143-146.                                                                                                                    | 1.1 | 40        |
| 120 | A monoclonal antibody to feruloylated-(1?4)-?-d-galactan. Planta, 2004, 219, 1036-1041.                                                                                                                    | 1.6 | 40        |
| 121 | Host-specific signatures of the cell wall changes induced by the plant parasitic nematode,<br>Meloidogyne incognita. Scientific Reports, 2018, 8, 17302.                                                   | 1.6 | 39        |
| 122 | Preparation and characterization of monoclonal antibodies which recognise different gibberellin epitopes. Planta, 1987, 170, 86-91.                                                                        | 1.6 | 38        |
| 123 | Detection of β-1-4-galactan in compression wood of Sitka spruce [Picea sitchensis (Bong.) Carrière] by<br>immunofluorescence. Holzforschung, 2007, 61, 311-316.                                            | 0.9 | 38        |
| 124 | Investigations into the occurrence of plant cell surface epitopes in exudate gums. Carbohydrate<br>Polymers, 1994, 24, 281-286.                                                                            | 5.1 | 36        |
| 125 | Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and<br>β-1,3–1,4-Glucans through Distinct Mechanisms. Journal of Biological Chemistry, 2015, 290, 10572-10586. | 1.6 | 36        |
| 126 | The photodynamic action of eosin, a singlet-oxygen generator. Planta, 1985, 164, 22-29.                                                                                                                    | 1.6 | 35        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC Plant Biology, 2015, 15, 56.                                                                      | 1.6 | 35        |
| 128 | The monoclonal antibody JIM5 indicates patterns of pectin deposition in relation to pit fields at the plasma-membrane-face of tomato pericarp cell walls. Protoplasma, 1995, 188, 133-137.                                              | 1.0 | 34        |
| 129 | Identification of Quantitative Trait Loci Affecting Hemicellulose Characteristics Based on Cell Wall Composition in a Wild and Cultivated Rice Species. Molecular Plant, 2012, 5, 162-175.                                              | 3.9 | 34        |
| 130 | Dynamics of cell wall assembly during early embryogenesis in the brown alga <i>Fucus</i> . Journal of Experimental Botany, 2016, 67, 6089-6100.                                                                                         | 2.4 | 34        |
| 131 | Electron-energy-loss spectroscopic imaging of calcium and nitrogen in the cell walls of apple fruits.<br>Planta, 1999, 208, 438-443.                                                                                                    | 1.6 | 32        |
| 132 | Modulating <i>in vitro</i> bone cell and macrophage behavior by immobilized enzymatically tailored pectins. Journal of Biomedical Materials Research - Part A, 2008, 86A, 597-606.                                                      | 2.1 | 32        |
| 133 | Multiâ€scale spatial heterogeneity of pectic rhamnogalacturonan I ( <scp>RG</scp> –I) structural<br>features in tobacco seed endosperm cell walls. Plant Journal, 2013, 75, 1018-1027.                                                  | 2.8 | 32        |
| 134 | Understanding How Noncatalytic Carbohydrate Binding Modules Can Display Specificity for<br>Xyloglucan. Journal of Biological Chemistry, 2013, 288, 4799-4809.                                                                           | 1.6 | 31        |
| 135 | Syncytia formed by adult female <i>Heterodera schachtii</i> in <i>Arabidopsis thaliana</i> roots have<br>a distinct cell wall molecular architecture. New Phytologist, 2012, 196, 238-246.                                              | 3.5 | 30        |
| 136 | Analysis of the physical properties of developing cotton fibres. European Polymer Journal, 2014, 51, 57-68.                                                                                                                             | 2.6 | 30        |
| 137 | Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 2015, 3, 10.                                                 | 1.8 | 30        |
| 138 | Arabinogalactan proteins in embryogenic and non-embryogenic callus cultures ofEuphorbia<br>pulcherrima. Physiologia Plantarum, 2000, 108, 180-187.                                                                                      | 2.6 | 29        |
| 139 | Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network<br>and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv Plant Cell, Tissue and Organ<br>Culture, 2013, 115, 35-44. | 1.2 | 29        |
| 140 | The photodynamic action of eosin, a singlet-oxygen generator. Planta, 1985, 164, 30-34.                                                                                                                                                 | 1.6 | 28        |
| 141 | Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle<br>progression and survival of fibroblasts. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780,<br>995-1003.                     | 1.1 | 28        |
| 142 | Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure<br>and development of transgenic tobacco (Nicotiana tabacum) plants. Journal of Plant Research, 2007,<br>120, 605-617.                 | 1.2 | 27        |
| 143 | Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-d-galactotetraose. Carbohydrate Research, 2016, 436, 36-40.                                                                                       | 1.1 | 27        |
| 144 | The Gsp-1 genes encode the wheat arabinogalactan peptide. Journal of Cereal Science, 2017, 74, 155-164.                                                                                                                                 | 1.8 | 27        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | β-(1,4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during<br>elongation. Planta, 2019, 249, 351-362.                                                                                                 | 1.6 | 27        |
| 146 | Identification of novel cell surface epitopes using a leaf epidermal-strip assay system. Planta, 1995, 196,<br>266.                                                                                                                       | 1.6 | 26        |
| 147 | The Deconstruction of Pectic Rhamnogalacturonan I Unmasks the Occurrence of a Novel<br>Arabinogalactan Oligosaccharide Epitope. Plant and Cell Physiology, 2015, 56, pcv128.                                                              | 1.5 | 26        |
| 148 | Photosensitisers from plants. Pest Management Science, 1986, 17, 579-586.                                                                                                                                                                 | 0.7 | 25        |
| 149 | Ginseng root water-extracted pectic polysaccharides originate from secretory cavities. Planta, 2011, 234, 487-499.                                                                                                                        | 1.6 | 25        |
| 150 | An extensin-rich matrix lines the carinal canals in Equisetum ramosissimum, which may function as water-conducting channels. Annals of Botany, 2011, 108, 307-319.                                                                        | 1.4 | 25        |
| 151 | Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales).<br>Micron, 2011, 42, 863-870.                                                                                                           | 1.1 | 23        |
| 152 | Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules.<br>Carbohydrate Polymers, 2012, 89, 213-221.                                                                                               | 5.1 | 23        |
| 153 | Extraction, texture analysis and polysaccharide epitope mapping data of sequential extracts of strawberry, apple, tomato and aubergine fruit parenchyma. Data in Brief, 2018, 17, 314-320.                                                | 0.5 | 23        |
| 154 | Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales):<br>histology and taxonomical significance. Annals of Botany, 2011, 107, 195-207.                                                       | 1.4 | 22        |
| 155 | A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates. Plant and Soil, 2018, 428, 57-65.                                                           | 1.8 | 22        |
| 156 | <i>Craterostigma plantagineum</i> cell wall composition is remodelled during desiccation and the<br>glycineâ€rich protein CpGRP1 interacts with pectins through clustered arginines. Plant Journal, 2019,<br>100, 661-676.                | 2.8 | 22        |
| 157 | Up against the wall: arabinogalactanâ€protein dynamics at cell surfaces. New Phytologist, 2006, 169, 443-445.                                                                                                                             | 3.5 | 21        |
| 158 | Reliable scale-up of membrane protein over-expression by bacterial auto-induction: From microwell plates to pilot scale fermentations. Molecular Membrane Biology, 2008, 25, 588-598.                                                     | 2.0 | 21        |
| 159 | Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the<br>Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development. Plant and<br>Cell Physiology, 2015, 56, 1786-1797. | 1.5 | 21        |
| 160 | The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects<br>Both Function and Host Plant. Frontiers in Plant Science, 2017, 8, 1087.                                                              | 1.7 | 21        |
| 161 | Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv. Plant Science, 2005, 169, 1090-1095.                                                                             | 1.7 | 20        |
| 162 | Intriguing, complex and everywhere: getting to grips with arabinogalactan-proteins. Trends in Plant Science, 1999, 4, 123-125.                                                                                                            | 4.3 | 19        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Intercellular Pectic Protuberances in Asplenium: New Data on their Composition and Origin. Annals of Botany, 2007, 100, 1165-1173.                                                             | 1.4 | 19        |
| 164 | ABA signalling modulates the detection of the LM6 arabinan cell wall epitope at the surface of <i>Arabidopsis thaliana</i> seedling root apices. New Phytologist, 2011, 190, 618-626.          | 3.5 | 19        |
| 165 | The chemical identity of intervessel pit membranes in <i>Acer</i> challenges hydrogel control of xylem hydraulic conductivity. AoB PLANTS, 2016, 8, .                                          | 1.2 | 19        |
| 166 | The monoclonal antibody JIM19 modulates abscisic acid action in barley aleurone protoplasts. Planta, 1995, 196, 271-276.                                                                       | 1.6 | 18        |
| 167 | Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation. BMC Plant Biology, 2017, 17, 176.                                             | 1.6 | 18        |
| 168 | Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. Frontiers in Plant Science, 2019, 10, 858.       | 1.7 | 18        |
| 169 | Isolation and characterisation of the homogalacturonan from type II cell walls of the commelinoid monocot wheat using HF-solvolysis. Carbohydrate Research, 2003, 338, 423-431.                | 1.1 | 17        |
| 170 | Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline<br>bodies of rhinanthoid Orobanchaceae haustoria. Annals of Botany, 2014, 114, 1359-1373. | 1.4 | 17        |
| 171 | Fingerprinting complex pectins by chromatographic separation combined with ELISA detection.<br>Carbohydrate Research, 2009, 344, 1808-1817.                                                    | 1.1 | 16        |
| 172 | The role of cell wall-based defences in the early restriction of non-pathogenic hrp mutant bacteria in<br>Arabidopsis. Phytochemistry, 2015, 112, 139-150.                                     | 1.4 | 16        |
| 173 | Arabinogalactan Proteins Occur in the Free-Living Cyanobacterium Genus <i>Nostoc</i> and in Plant– <i>Nostoc</i> Symbioses. Molecular Plant-Microbe Interactions, 2012, 25, 1338-1349.         | 1.4 | 15        |
| 174 | In Situ Detection of Cellulose with Carbohydrate-Binding Modules. Methods in Enzymology, 2012, 510, 233-245.                                                                                   | 0.4 | 15        |
| 175 | Monoclonal Antibodies to 13-Deoxy-Gibberellins. Plant Physiology, 1988, 88, 959-960.                                                                                                           | 2.3 | 14        |
| 176 | <b><i>Physcomitrella patens</i></b> : A moss system for the study of plant cell walls. Plant<br>Biosystems, 2005, 139, 16-19.                                                                  | 0.8 | 14        |
| 177 | Pectic galactan affects cell wall architecture during secondary cell wall deposition. Planta, 2020, 251, 100.                                                                                  | 1.6 | 14        |
| 178 | Carbohydrate antigens and lectin receptors of the plasma membrane of carrot cells. Protoplasma, 1989, 152, 123-129.                                                                            | 1.0 | 13        |
| 179 | Mapping the walls of the kingdom: the view from the horsetails. New Phytologist, 2008, 179, 1-3.                                                                                               | 3.5 | 13        |
| 180 | In situ detection of cell wall polysaccharides in sitka spruce (Picea sitchensis (Bong.) Carrière) wood tissue. BioResources, 2007, 2, 284-295.                                                | 0.5 | 13        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Resin Embedding, Sectioning, and Immunocytochemical Analyses of Plant Cell Walls in Hard Tissues.<br>Methods in Molecular Biology, 2014, 1080, 41-52.                                          | 0.4 | 12        |
| 182 | Differential metabolism of pectic galactan in tomato and strawberry fruit: detection of the LM26 branched galactan epitope in ripe strawberry fruit. Physiologia Plantarum, 2018, 164, 95-105. | 2.6 | 12        |
| 183 | Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development. Planta,<br>2019, 249, 1565-1581.                                                                     | 1.6 | 11        |
| 184 | Pectic Polysaccharides and Expanding Cell Walls. , 2006, , 139-158.                                                                                                                            |     | 10        |
| 185 | Non-Cellulosic Polysaccharides from Cotton Fibre Are Differently Impacted by Textile Processing.<br>PLoS ONE, 2014, 9, e115150.                                                                | 1.1 | 10        |
| 186 | Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities. BMC Plant Biology, 2017, 17, 69.           | 1.6 | 9         |
| 187 | Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell<br>Wall Remodeling during Strawberry Fruit Ripening. Plants, 2020, 9, 805.                     | 1.6 | 8         |
| 188 | Comparative in situ analysis reveals the dynamic nature of sclerenchyma cell walls of the fern<br>Asplenium rutifolium. Annals of Botany, 2018, 121, 345-358.                                  | 1.4 | 6         |
| 189 | Monoclonal Antibodies, Carbohydrate-Binding Modules, and Detection of Polysaccharides in Cell<br>Walls from Plants and Marine Algae. Methods in Molecular Biology, 2020, 2149, 351-364.        | 0.4 | 4         |
| 190 | Delving in the deep for the origin of plant cell surface proteoglycans. New Phytologist, 2016, 209, 1341-1343.                                                                                 | 3.5 | 3         |
| 191 | Arabinogalactan-Proteins and Cell Development in Roots and Somatic Embryos. , 2000, , 95-107.                                                                                                  |     | 3         |
| 192 | Modulation of fibroblast behaviour by enzymatically-tailored pectins: PectiCoat. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 171-172.                               | 0.9 | 1         |
| 193 | Pectin Cell Biology: Complexity in Context. , 2003, , 147-157.                                                                                                                                 |     | 1         |
|     |                                                                                                                                                                                                |     |           |

A Role for Arabinogalactan-Proteins in Root Growth. , 2000, , 287-287.

0