
## Olga Gajtko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681271/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phase composition and morphology of nanoparticles of yttrium orthophosphates synthesized by microwave-hydrothermal treatment: The influence of synthetic conditions. Journal of Alloys and Compounds, 2015, 639, 415-421. | 5.5 | 39        |
| 2  | Vacuum ultraviolet spectroscopic analysis of Ce3+-doped hexagonal YPO4·0.8H2O based on exchange charge model. Journal of Luminescence, 2014, 152, 70-74.                                                                  | 3.1 | 15        |
| 3  | Synthesis and characterization of new isostructural series LnFe0.5Sb1.5O6 (LnÂ= La-Sm) exhibiting high catalytic activity in CO oxidation. Journal of Alloys and Compounds, 2019, 777, 655-662.                           | 5.5 | 15        |
| 4  | New complex bismuth oxides in the Bi2O3–NiO–Sb2O5 system and their properties. Journal of Solid<br>State Chemistry, 2015, 225, 97-104.                                                                                    | 2.9 | 14        |
| 5  | Broadband white radiation in Yb3+- and Er3+-doped nanocrystalline powders of yttrium orthophosphates irradiated by 972-nm laser radiation. JETP Letters, 2016, 103, 302-308.                                              | 1.4 | 13        |
| 6  | Microwave hydrothermal synthesis of nanodispersed YV1 â^' x P x O4:Eu powders. Doklady Chemistry, 2011, 441, 325-329.                                                                                                     | 0.9 | 12        |
| 7  | Targeted synthesis ultrafine α- and γ-Bi2O3 having different morphologies. Russian Journal of Inorganic<br>Chemistry, 2017, 62, 1426-1434.                                                                                | 1.3 | 12        |
| 8  | Synthesis, spectroscopic and luminescent properties of nanosized powders of yttrium phosphates doped with Er3+ ions. Journal of Nanoparticle Research, 2014, 16, 1.                                                       | 1.9 | 11        |
| 9  | High electrorheological effect in Bi1.8Fe1.2SbO7 suspensions. Powder Technology, 2020, 360, 96-103.                                                                                                                       | 4.2 | 11        |
| 10 | The Bi2O3–Fe2O3–Sb2O5 system phase diagram refinement, Bi3FeSb2O11 structure peculiarities and magnetic properties. Journal of Solid State Chemistry, 2015, 225, 278-284.                                                 | 2.9 | 10        |
| 11 | Subsolidus phase equilibria in the La2O3–Fe2O3–Sb2O5 system and characterization of layered ternary oxide LaFe0.5Sb1.5O6. Ceramics International, 2016, 42, 13976-13982.                                                  | 4.8 | 10        |
| 12 | Synthesis of Bi–Fe–Sb–O Pyrochlore Nanoparticles with Visible‣ight Photocatalytic Activity.<br>European Journal of Inorganic Chemistry, 2016, 2016, 2193-2199.                                                            | 2.0 | 10        |
| 13 | Crystalline WO3 nanoparticles for No2 sensing. Processing and Application of Ceramics, 2020, 14, 282-292.                                                                                                                 | 0.8 | 10        |
| 14 | Features of the interaction of near-infrared laser radiation with Yb-doped dielectric nanoparticles.<br>JETP Letters, 2016, 103, 743-751.                                                                                 | 1.4 | 9         |
| 15 | Complex Rare-Earth Tantalates with Pyrochlore-Like Structure: Synthesis, Structure, and Thermal<br>Properties. Russian Journal of Inorganic Chemistry, 2019, 64, 1342-1353.                                               | 1.3 | 9         |
| 16 | Isomorphism in the Bi1.8Fe1.2(1â´x)Ga1.2xSbO7 pyrochlores with spin glass transition. Journal of Alloys and Compounds, 2016, 688, 1-7.                                                                                    | 5.5 | 8         |
| 17 | Synthesis and spectral-luminescent properties of La1-xPrxGa0.5Sb1.5O6 solid solutions. Ceramics<br>International, 2019, 45, 16886-16892.                                                                                  | 4.8 | 8         |
| 18 | Complex dependence of magnetic properties on Mn concentration in Bi-Mn-Sb-O pyrochlores. Journal of Alloys and Compounds, 2017, 718, 311-318.                                                                             | 5.5 | 7         |

Olga Gajtko

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nanosecond fluctuation kinetics of luminescence hopping quenching originated from the 5d1 level in the Ce3+:YPO4·0.8H2O nanocrystals. Journal of Luminescence, 2014, 145, 774-778. | 3.1 | 6         |
| 20 | Synthesis of nanocrystalline ternary bismuth iron antimony oxide with pyrochlore structure.<br>Russian Journal of Inorganic Chemistry, 2015, 60, 1179-1183.                        | 1.3 | 6         |
| 21 | Synthesis of Fine-Particle Bismuth Orthogermanate in a NaCl/KCl Melt. Inorganic Materials, 2018, 54, 616-620.                                                                      | 0.8 | 6         |
| 22 | Magnetic properties of Pr2–x Fe1 + x SbO7 and Bi2–x Ln x FeSbO7 (Ln = La, Pr) pyrochlore solid<br>solutions. Inorganic Materials, 2016, 52, 1035-1044.                             | 0.8 | 5         |
| 23 | Highly frustrated Bi-Cr-Sb-O pyrochlore with spin-glass transition. Journal of Magnetism and<br>Magnetic Materials, 2018, 463, 13-18.                                              | 2.3 | 5         |
| 24 | (Ln1.8Fe0.2)FeSbO7 (Ln = Pr–Tb) Mixed Oxides with the Pyrochlore Structure in CO Oxidation Reaction.<br>Inorganic Materials, 2019, 55, 1257-1263.                                  | 0.8 | 5         |
| 25 | Microwave-Assisted Self-Propagating High-Temperature Synthesis of Fine-Particle Bi4Ge3O12. Inorganic<br>Materials, 2019, 55, 1250-1256.                                            | 0.8 | 5         |
| 26 | Synthesis, structural feature and properties of rosiait structure compound BiGeSbO6. Ceramics<br>International, 2020, 46, 7413-7420.                                               | 4.8 | 5         |
| 27 | Crystallization in the Bi2O3-Fe2O3-NaOH system upon microwave-assisted hydrothermal synthesis.<br>Russian Journal of Inorganic Chemistry, 2015, 60, 1304-1310.                     | 1.3 | 4         |
| 28 | Microwave-Assisted Hydrothermal Synthesis of Bi6(NO3)2O7(OH)2 and Its Photocatalytic Properties.<br>Russian Journal of Inorganic Chemistry, 2019, 64, 13-17.                       | 1.3 | 4         |
| 29 | Microwave synthesis of monodisperse luminescent Y2 â~' x Eu x O3 powders with spherical particles of predetermined size. Doklady Chemistry, 2010, 435, 289-293.                    | 0.9 | 3         |
| 30 | Fluorination of Bi1.8Fe1.2SbO7 pyrochlore solid solutions. Inorganic Materials, 2017, 53, 962-968.                                                                                 | 0.8 | 3         |
| 31 | Electrorheological Properties of α-Bi2O3 and Bi2O2CO3. Inorganic Materials, 2019, 55, 344-354.                                                                                     | 0.8 | 3         |
| 32 | Effect of synthesis conditions of the micro- and mesostructure of monodisperse Y(OH)CO3 powders.<br>Doklady Chemistry, 2012, 446, 207-211.                                         | 0.9 | 2         |
| 33 | Synthesis of nanocrystalline BiSbO4. Russian Journal of Inorganic Chemistry, 2017, 62, 1155-1161.                                                                                  | 1.3 | 2         |
| 34 | Electrorheological Fluids Based on Bismuth Ferrites BiFeO3 and Bi2Fe4O9. Russian Journal of<br>Inorganic Chemistry, 2020, 65, 1253-1263.                                           | 1.3 | 2         |
| 35 | Optical and vibrational spectra of Bi1.8Fe1.2(1 – x)Ga1.2x SbO7 solid solutions with pyrochlore-type structure. Russian Journal of Inorganic Chemistry, 2017, 62, 960-963.         | 1.3 | 1         |
| 36 | One-step synthesis of Bi2Sr2CaCu2O8 + z by microwave decomposition of stoichiometric nitrate mixtures. Doklady Chemistry, 2009, 429, 255-257.                                      | 0.9 | 0         |

| #  | Article                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spectral and luminescent characteristics of La1-xPrxGa0.5Sb1.5O6, Bi1-xPrxGe0.5Sb1.5O6 (x = 0 - 0.5) solid solutions. AIP Conference Proceedings, 2020, , . | 0.4 | 0         |