
Hamid sepehrian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6812359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound promoted rapid and green synthesis of 1,8-dioxo-octahydroxanthenes derivatives using nanosized MCM-41-SO3H as a nanoreactor, nanocatalyst in aqueous media. Ultrasonics Sonochemistry, 2010, 17, 306-309.	3.8	82
2	Synthesis of Some Novel 2-Aryl-Substituted 2,3-Dihydroquinazolin-4(1H)-ones under Solvent-Free Conditions Using MCM-41-SO3H as a Highly Efficient Sulfonic Acid. Synthesis, 2010, 2010, 1356-1360.	1.2	73
3	Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: Effects of pH, contact time, temperature and presence of phosphate. Annals of Nuclear Energy, 2012, 48, 21-24.	0.9	69
4	MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): A mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction. Chinese Chemical Letters, 2008, 19, 1435-1439.	4.8	58
5	Adsorption Studies of Heavy Metal Ions on Mesoporous Aluminosilicate, Novel Cation Exchanger. Journal of Hazardous Materials, 2010, 176, 252-256.	6.5	50
6	Adsorption Behavior Studies of Picric Acid on Mesoporous MCM-41. Industrial & Engineering Chemistry Research, 2009, 48, 6772-6775.	1.8	45
7	Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: Breakthrough curves, elution behavior and modeling studies. Annals of Nuclear Energy, 2013, 54, 149-153.	0.9	44
8	MCMâ€41â€6O ₃ H as a Highly Efficient Sulfonic Acid Nanoreactor for the Rapid and Green Synthesis of Some Novel Highly Substituted Imidazoles under Solventâ€Free Condition. Chinese Journal of Chemistry, 2012, 30, 703-708.	2.6	34
9	Fast and efficient method for the synthesis of 2-arylbenzimidazoles using MCM-41-SO ₃ H. Heterocyclic Communications, 2012, 18, 33-37.	0.6	31
10	Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent. International Journal of Environmental Science and Technology, 2012, 9, 629-636.	1.8	25
11	Nanoporous graphene oxide membrane and its application in molecular sieving. Carbon Letters, 2015, 16, 183-191.	3.3	22
12	Cu(OAc)2/MCM-41: An efficient and solid acid catalyst for synthesis of 2-arylbenzothiazoles under ultrasound irradiation. Ultrasonics Sonochemistry, 2011, 18, 480-483.	3.8	21
13	Preparation of Cu(OAc) ₂ /MCMâ€41 catalyst and its application in the oneâ€pot synthesis of 1,2,3â€triazoles in water. Heteroatom Chemistry, 2012, 23, 415-421.	0.4	18
14	Encapsulation of nanoporous MCM-41 in biopolymeric matrix of calcium alginate and its use as effective adsorbent for lead ions: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 343-348.	2.7	18
15	Synthesis, Characterization, and Cesium Sorption Performance of Potassium Nickel Hexacyanoferrate-Loaded Granular Activated Carbon. Particulate Science and Technology, 2014, 32, 348-354.	1.1	17
16	Sorption studies of radionuclides on a modified mesoporous cerium(IV) silicate. Journal of Radioanalytical and Nuclear Chemistry, 2008, 275, 145-153.	0.7	16
17	Adsorption Behavior of Molybdenum on Modified Mesoporous Zirconium Silicates. Separation Science and Technology, 2010, 45, 421-426.	1.3	15
18	Supporting of Lead Hexacyanoferrate on Mesoporous MCM-41 and its use as Effective Adsorbent for Strontium: Equilibrium, Kinetic, and Thermodynamic Studies. Separation Science and Technology, 2014, 49, 241-248.	1.3	10

HAMID SEPEHRIAN

#	Article	IF	CITATIONS
19	Cobalt (II) Adsorption from Aqueous Solution Using Alginate-SBA-15 Nanocomposite: Kinetic, Isotherm, Thermodynamic Studies and Neural Network Modeling. Materials Focus, 2016, 5, 91-99.	0.4	10
20	Development of Thiol-Functionalized Mesoporous Silicate MCM-41 as a Modified Sorbent and Its Use in Chromatographic Separation of Metal Ions from Aqueous Nuclear Waste. Chromatographia, 2009, 70, 277-280.	0.7	8
21	Simulation studies of the separation of Kr-85 radionuclide gas from nitrogen and oxygen across nanoporous graphene membranes in different pore configurations. European Physical Journal Plus, 2016, 131, 1.	1.2	8
22	Development of Nanoporous Alumino-borosilicate as a Novel Matrix for the Sorption and Stable Immobilization of Cesium Ions. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 369-378.	1.9	8
23	Molecular Perspective of Radionuclides Separation by Nanoporous Graphene Oxide Membrane. Chemical Product and Process Modeling, 2016, 11, 3-5.	0.5	7
24	Selective Nanopores in Graphene Sheet for Separation I-129 Isotope from Air. Journal of Advanced Physics, 2017, 6, 10-17.	0.4	5
25	Adsorption Studies of Radionuclides and Toxic Metal Ions on a Modified Mesoporous Lanthanum(III) Silicate. Chinese Journal of Chemistry, 2010, 28, 561-566.	2.6	4
26	Uranium recovery from UCF liquid waste by nanoporous MCM-41: breakthrough capacity and elution behavior studies. Research on Chemical Intermediates, 2013, 39, 951-959.	1.3	4
27	Zinc hexacyanoferrate loaded mesoporous MCM-41 as a new adsorbent for cesium: equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 0, , 1-9.	1.0	4
28	Adsorption of Thorium from Aqueous Solution using Nanoporous Adsorbents: Effect of Contact Time, pH, Initial Concentration, and Temperature. Particulate Science and Technology, 2013, 31, 372-378.	1.1	3
29	Preparation, characterization, and iodide sorption performance of silver-loaded mesoporous MCM-41. Desalination and Water Treatment, 0, , 1-10.	1.0	3
30	Determination of the surface area of mesoporous silicates by X-ray diffraction patterns using partial least squares and multiple linear regressions. Particulate Science and Technology, 2016, 34, 347-351.	1.1	3
31	Modified Mesoporous Silicate MCMâ€41 for Zinc Ion Adsorption: Synthesis, Characterization and Its Adsorption Behavior. Chinese Journal of Chemistry, 2009, 27, 2171-2174.	2.6	2
32	Influence of the Synthesis pH on Sorption Behavior of Mesoporous MCMâ€41 for Toxic Metal Ions. Chinese Journal of Chemistry, 2010, 28, 1923-1926.	2.6	2
33	Gaseous Iodine Entrapping Onto Mesoporous Silica MCM-41 Supported <i>d</i> -Element Nitrate. Materials Focus, 2017, 6, 87-95.	0.4	1
34	Modified Mesoporous Cerium(III) Silicate: Synthesis, Characterization and Adsorption Studies of Heavy Metal Ions. Oriental Journal of Chemistry, 2012, 28, 715-723.	0.1	0
35	Comparative Sorption Potential of Gaseous Iodine Onto Nanoporous Silicate SBA-15 Supported Various <i>d</i> -Element Nitrates. Energy and Environment Focus, 2016, 5, 131-138.	0.3	0