Neil Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6812267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing Dyes for Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 2338-2345.	13.8	886
2	Metal bis-1,2-dithiolene complexes in conducting or magnetic crystalline assemblies. Coordination Chemistry Reviews, 2002, 227, 93-127.	18.8	580
3	Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2· H2O. Nature, 1996, 380, 144-146.	27.8	375
4	A comparison of potential molecular wires as components for molecular electronics. Chemical Society Reviews, 2003, 32, 96-103.	38.1	320
5	Photoredox catalysts based on earth-abundant metal complexes. Catalysis Science and Technology, 2019, 9, 889-915.	4.1	203
6	Synthesis, Structure, and Properties of [Pt(II)(diimine)(dithiolate)] Dyes with 3,3â€~-, 4,4â€~-, and 5,5â€~-Disubstituted Bipyridyl: Applications in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2005, 44, 242-250.	4.0	201
7	Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. Chemical Communications, 2009, , 6649.	4.1	200
8	Thermally Activated Delayed Fluorescence (TADF) and Enhancing Photoluminescence Quantum Yields of [Cu ^I (diimine)(diphosphine)] ⁺ Complexes—Photophysical, Structural, and Computational Studies. Inorganic Chemistry, 2014, 53, 10854-10861.	4.0	198
9	Catching the Rainbow: Light Harvesting in Dye ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 1012-1014.	13.8	178
10	Substituted [Cu(i)(POP)(bipyridyl)] and related complexes: Synthesis, structure, properties and applications to dye-sensitised solar cells. Dalton Transactions, 2010, 39, 8945.	3.3	131
11	Molecular Engineering of Potent Sensitizers for Very Efficient Light Harvesting in Thin-Film Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2016, 138, 10742-10745.	13.7	119
12	The imitation game—a computational chemical approach to recognizing life. Nature Biotechnology, 2006, 24, 1203-1206.	17.5	113
13	Characterization and reduction of reabsorption losses in luminescent solar concentrators. Applied Optics, 2010, 49, 1651.	2.1	112
14	SFX as a low-cost â€~Spiro' hole-transport material for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4855-4863.	10.3	111
15	Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 6949.	10.3	105
16	Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustainable Energy and Fuels, 2017, 1, 308-316.	4.9	90
17	Pt(II) Metal Complexes Tailored with a Newly Designed Spiro-Arranged Tetradentate Ligand; Harnessing of Charge-Transfer Phosphorescence and Fabrication of Sky Blue and White OLEDs. Inorganic Chemistry, 2015, 54, 4029-4038.	4.0	87
18	Noncovalent Interactions under Extreme Conditions: High-Pressure and Low-Temperature Diffraction Studies of the Isostructural Metalâ^'Organic Networks (4-Chloropyridinium) ₂ [CoX ₄] (X = Cl, Br). Journal of the American Chemical Society. 2008, 130, 9058-9071.	13.7	82

#	Article	IF	CITATIONS
19	Synthesis, structure and properties of [Pt(2,2′-bipyridyl-5,5′-dicarboxylic acid)(3,4-toluenedithiolate)]: tuning molecular properties for application in dye-sensitised solar cells. Dalton Transactions, 2003, , 3757-3762.	3.3	79
20	Cu ^I versus Ru ^{II} : Dye‣ensitized Solar Cells and Beyond. ChemSusChem, 2008, 1, 977-979.	6.8	71
21	Synthesis, structure and properties of [ethylpyridinium][Ni(mnt)2]: evidence for an unusual magnetically ordered ground state. Journal of Materials Chemistry, 1999, 9, 1713-1717.	6.7	66
22	Effect of an auxiliary acceptor on D–A–π–A sensitizers for highly efficient and stable dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 12865-12877.	10.3	66
23	Why is Anatase a Better Photocatalyst than Rutile? The Importance of Free Hydroxyl Radicals. ChemSusChem, 2015, 8, 1838-1840.	6.8	64
24	Synergy of co-sensitizers in a copper bipyridyl redox system for efficient and cost-effective dye-sensitized solar cells in solar and ambient light. Journal of Materials Chemistry A, 2020, 8, 1279-1287.	10.3	62
25	Preparation, X-ray structure and properties of a hexabrominated, symmetric indole trimer and its TCNQ adduct: a new route to functional molecular systems. Journal of Materials Chemistry, 2000, 10, 2043-2047.	6.7	61
26	A nickel-complex sensitiser for dye-sensitised solar cells. Solar Energy, 2011, 85, 1195-1203.	6.1	59
27	(N-Methylthiocarbamoyl)tetrathiafulvalene derivatives and their radical cations: synthetic and X-ray structural studies. Journal of Materials Chemistry, 1998, 8, 1541-1550.	6.7	58
28	Hole-transport materials with greatly-differing redox potentials give efficient TiO2–[CH3NH3][PbX3] perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2335-2338.	2.8	57
29	Synthesis, structure and properties of nickel complexes of 4,5-tetrathiafulvalene dithiolates: high conductivity in neutral dithiolate complexes. Chemical Communications, 1996, , 1363.	4.1	56
30	First charge-transfer complexes between tetrathiafulvalene and 1,2,5-chalcogenadiazole derivatives: Design, synthesis, crystal structures, electronic and electrical properties. Synthetic Metals, 2012, 162, 2267-2276.	3.9	54
31	Nanoflower Ni(OH) ₂ grown <i>in situ</i> on Ni foam for high-performance supercapacitor electrode materials. Sustainable Energy and Fuels, 2021, 5, 5236-5246.	4.9	54
32	Redox-Switchable Chromophores Based on Metal (Ni, Pd, Pt) Mixed-Ligand Dithiolene Complexes Showing Molecular Second-Order Nonlinear-Optical Activity. Inorganic Chemistry, 2011, 50, 2058-2060.	4.0	53
33	Luminescent Ethylene Vinyl Acetate Encapsulation Layers for Enhancing the Short Wavelength Spectral Response and Efficiency of Silicon Photovoltaic Modules. IEEE Journal of Photovoltaics, 2011, 1, 29-36.	2.5	53
34	Neutral copper(<scp>i</scp>) dipyrrin complexes and their use as sensitizers in dye-sensitized solar cells. Dalton Transactions, 2014, 43, 4127-4136.	3.3	51
35	Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 196-204.	3.9	50
36	Metal complexes of a tetrathiafulvalene 4,5-dithiolate. Synthesis, characterisation and properties of dianionic and neutral mercury complexes. Journal of the Chemical Society Dalton Transactions, 1996, , 823.	1.1	49

#	Article	IF	CITATIONS
37	Spectroscopic, electrochemical and computational study of Pt–diimine–dithiolene complexes: rationalising the properties of solar cell dyes. Dalton Transactions, 2008, , 3701.	3.3	49
38	A new class of macrocycle capable of binding exogenous metals: synthesis, structure, magnetic and electrochemical properties of a Cu(II) trinuclear complex based upon 1,4,8,11-tetraazacyclotetradecane-2,3-dione [exoO2]cyclamâ€Sâ€. Journal of the Chemical Society Dalton Transactions, 1999, , 1925-1928.	1.1	48
39	Insight into quinoxaline containing D–π–A dyes for dye-sensitized solar cells with cobalt and iodine based electrolytes: the effect of π-bridge on the HOMO energy level and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21733-21743.	10.3	47
40	Tetrahedral and Square Planar Ni[(SPR ₂) ₂ N] ₂ complexes, R = Ph & ⁱ Pr Revisited: Experimental and Theoretical Analysis of Interconversion Pathways, Structural Preferences, and Spin Delocalization. Inorganic Chemistry, 2010, 49, 5079-5093.	4.0	46
41	D-A-ï€-A Motif Quinoxaline-Based Sensitizers with High Molar Extinction Coefficient for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31016-31024.	8.0	46
42	Bridging the gap between laboratory and application in photocatalytic water purification. Catalysis Science and Technology, 2019, 9, 533-545.	4.1	45
43	Investigating Magnetostructural Correlations in the Pseudooctahedral <i>trans</i> -[Ni ^{II} {(OPPh ₂)(EPPh ₂)N} ₂ (sol) ₂] Complexes (E = S, Se; sol = DMF, THF) by Magnetometry, HFEPR, and ab Initio Quantum Chemistry. Inorganic Chemistry. 2012. 51. 7218-7231.	4.0	44
44	Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Advances, 2013, 3, 23361.	3.6	41
45	p-Type NiO Hybrid Visible Photodetector. ACS Applied Materials & Interfaces, 2015, 7, 27597-27601.	8.0	41
46	Preparation and photophysical studies of [Ln(hfac)3DPEPO], Ln = Eu, Tb, Yb, Nd, Gd; interpretation of total photoluminescence quantum yields. Dalton Transactions, 2013, 42, 13537.	3.3	40
47	Oxovanadium(IV) Cyclam and Bicyclam Complexes: Potential CXCR4 Receptor Antagonists. Inorganic Chemistry, 2010, 49, 1122-1132.	4.0	39
48	BiVO ₄ â€TiO ₂ Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method. ChemPhysChem, 2016, 17, 2872-2880.	2.1	39
49	Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution. Chemical Science, 2016, 7, 7061-7067.	7.4	38
50	Preparation and X-ray crystal structures of the first radical cation salts of4-iodotetrathiafulvalene: [ITTF.+]2{Pd[S2C2(CN) 2]2}2â~' and ITTF .+HSO4â~'. Journal of Materials Chemistry, 1997, 7, 387-389.	6.7	36
51	Structural, spectroscopic and magnetic properties of M[R2P(E)NP(E)R′2]2complexes, M = Co, Mn, E = S, Se and R, R′ = Ph oriPr. Covalency of M–S bonds from experimental data and theoretical calculations. Dalton Transactions, 2006, , 2301-2315.	3.3	35
52	An Organic "Donorâ€Free―Dye with Enhanced Openâ€Circuit Voltage in Solidâ€State Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400166.	19.5	35
53	Interdye Hole Transport Accelerates Recombination in Dye Sensitized Mesoporous Films. Journal of the American Chemical Society, 2016, 138, 13197-13206.	13.7	35
54	Conversion of tetrahedral to octahedral structures upon solvent coordination: studies on the M[(OPPh ₂)(SePPh ₂)N] ₂ (M = Co, Ni) and [Ni{(OPPh ₂)(EPPh ₂)N} ₂ (dmf) ₂] (E = S, Se) complexes. Dalton Transactions, 2011, 40, 169-180.	3.3	34

#	Article	IF	CITATIONS
55	Extending lead-free hybrid photovoltaic materials to new structures: thiazolium, aminothiazolium and imidazolium iodobismuthates. Dalton Transactions, 2018, 47, 7050-7058.	3.3	34
56	Solar Disinfection (SODIS) Provides a Much Underexploited Opportunity for Researchers in Photocatalytic Water Treatment (PWT). ACS Catalysis, 2020, 10, 11779-11782.	11.2	34
57	Facile synthesis and characterization of Bi ₁₃ S ₁₈ I ₂ films as a stable supercapacitor electrode material. Journal of Materials Chemistry A, 2019, 7, 1638-1646.	10.3	33
58	[BDTA]2[Cu(mnt)2]:Â An Almost Perfect One-Dimensional Magnetic Material. Inorganic Chemistry, 2005, 44, 546-551.	4.0	32
59	The Anions[W(CH3)7]â^' and[Re(CH3)8]2â^'. Angewandte Chemie International Edition in English, 1997, 36, 1350-1352.	4.4	31
60	Efficient Pt(<scp>ii</scp>) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. Journal of Materials Chemistry C, 2015, 3, 10837-10847.	5.5	31
61	Structural, Magnetic, and Electronic Properties of Phenolic Oxime Complexes of Cu and Ni. Inorganic Chemistry, 2011, 50, 12867-12876.	4.0	30
62	Nonlinear-Optical Properties of Î \pm -Diiminedithiolatonickel(II) Complexes Enhanced by Electron-Withdrawing Carboxyl Groups. Inorganic Chemistry, 2014, 53, 4517-4526.	4.0	30
63	Indole-substituted nickel dithiolene complexes in electronic and optoelectronic devices. Journal of Materials Chemistry, 2011, 21, 15422.	6.7	29
64	Characterisation of a ruthenium bipyridyl dye showing a long-lived charge-separated state on TiO2 in the presence of lâ^'/l3â^'. Dalton Transactions, 2010, 39, 4138.	3.3	28
65	High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15027-15034.	3.1	28
66	â€~Donor-free' oligo(3-hexylthiophene) dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 2509-2516.	10.3	28
67	A stable near IR switchable electrochromic polymer based on an indole-substituted nickel dithiolene. Chemical Communications, 2009, , 5826.	4.1	27
68	Planar Ni(ii), Cu(ii) and Co(ii) tetraaza[14]annulenes: structural, electronic and magnetic properties and application to field effect transistors. Journal of Materials Chemistry, 2012, 22, 17967.	6.7	27
69	Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO ₂ /P3HT Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17226-17235.	8.0	27
70	Facile hydrothermal synthesis of economically viable VO 2 (M1) counter electrode for dye sensitized solar cells. Materials Research Bulletin, 2016, 83, 135-140.	5.2	27
71	Crown ether lanthanide complexes as building blocks for luminescent ternary complexes. Polyhedron, 2003, 22, 745-754.	2.2	26
72	Electrochromic second-order NLO chromophores based on MII (M = Ni, Pd, Pt) complexes with diselenolato–dithione (donor–acceptor) ligands. Dalton Transactions, 2012, 41, 12106.	3.3	26

#	Article	IF	CITATIONS
73	Effect of torsional twist on 2nd order non-linear optical activity of anthracene and pyrene tricyanofuran derivatives. Physical Chemistry Chemical Physics, 2014, 16, 23404-23411.	2.8	26
74	Improving Carbonâ€Coated TiO ₂ Films with a TiCl ₄ Treatment for Photocatalytic Water Purification. ChemCatChem, 2018, 10, 234-243.	3.7	26
75	Synthesis, Structure, and Complexation of a Large 28-mer Macrocycle Containing Two Binding Sites for Either Anions or Metal Ions. Inorganic Chemistry, 2004, 43, 8023-8029.	4.0	25
76	Combined Magnetic and Single-Crystal X-ray Structural Study of the Linear Chain Antiferromagnet [(CH3)4N][MnCl3] under Varying Pressure. Journal of the American Chemical Society, 2006, 128, 9205-9210.	13.7	25
77	Photocurrent Switching Effects in TiO ₂ Modified with Ruthenium Polypyridine Complexes. Journal of Physical Chemistry C, 2011, 115, 12187-12195.	3.1	25
78	Dye-sensitized solar cells: Investigation of D-A-Ï€-A organic sensitizers based on [1,2,5]selenadiazolo[3,4-c]pyridine. Solar Energy, 2017, 144, 134-143.	6.1	25
79	Electrochromic bilayers of Prussian blue and its Cr analogue. Journal of Materials Chemistry C, 2018, 6, 512-517.	5.5	25
80	Effect of alkyl chain length on the properties of triphenylamine-based hole transport materials and their performance in perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 1252-1260.	2.8	25
81	Synthesis, Structural Characterization, and Magnetic Studies of Polynuclear Iron Complexes with a New Disubstituted Pyridine Ligand. Inorganic Chemistry, 2005, 44, 3337-3346.	4.0	24
82	Nickel dithiolenes containing pendant thiophene units: precursors to dithiolene–polythiophene hybrid materials. Journal of Materials Chemistry, 2008, 18, 475-483.	6.7	24
83	Hybrid perovskite-like iodobismuthates as low-cost and stable anode materials for lithium-ion battery applications. Journal of Materials Chemistry A, 2021, 9, 2689-2693.	10.3	24
84	Adsorption and redox chemistry of cis-RuLL'(SCN)2 with L=4,4′-dicarboxylic acid-2,2′-bipyridine and L'=4,4′-dinonyl-2,2′-bipyridine (Z907) at FTO and TiO2 electrode surfaces. Journal of Solid State Electrochemistry, 2010, 14, 1929-1936.	2.5	23
85	V ₂ O ₅ as an inexpensive counter electrode for dye sensitized solar cells. Materials Research Express, 2016, 3, 035501.	1.6	23
86	SILAR BiOIâ€Sensitized TiO ₂ Films for Visibleâ€Light Photocatalytic Degradation of Rhodamineâ€B and 4â€Chlorophenol. ChemPhysChem, 2017, 18, 728-735.	2.1	23
87	Synthesis and properties of [Pt(4-CO2CH3-py)2(mnt)]: comparison of pyridyl and bipyridyl-based dyes for solar cells. Dalton Transactions, 2008, , 6940.	3.3	22
88	New indole trimers as precursors for molecular electronic materials. Tetrahedron Letters, 2012, 53, 657-660.	1.4	22
89	Electron-donating strength dependent symmetry breaking charge transfer dynamics of quadrupolar molecules. Physical Chemistry Chemical Physics, 2020, 22, 15743-15750.	2.8	22
90	Naphthyl Derivatives Functionalised with Electron Acceptor Units – Synthesis, Electronic Characterisation and DFT Calculations. European Journal of Organic Chemistry, 2012, 2012, 4947-4953.	2.4	21

#	Article	IF	CITATIONS
91	Dye sensitized solar cells with cobalt and iodine-based electrolyte: the role of thiocyanate-free ruthenium sensitizers. Journal of Materials Chemistry A, 2014, 2, 19556-19565.	10.3	21
92	Sequential ionic layer adsorption and reaction (SILAR) deposition of Bi ₄ Ti ₃ O ₁₂ on TiO ₂ : an enhanced and stable photocatalytic system for water purification. Catalysis Science and Technology, 2018, 8, 829-839.	4.1	21
93	[1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-Ï€-A Organic Sensitizers for Dye-Sensitized Solar Cells. Molecules, 2019, 24, 1588.	3.8	21
94	Photogeneration of titanium(III) from titanium(IV) citrate in aqueous solution. Journal of Inorganic Biochemistry, 2006, 100, 1260-1264.	3.5	20
95	Ethynyl thiophene-appended unsymmetrical zinc porphyrin sensitizers for dye-sensitized solar cells. RSC Advances, 2014, 4, 14165-14175.	3.6	20
96	9-(p-Tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole—A new donor building-block in the design of sensitizers for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112333.	3.9	20
97	Photocatalytic Oxidation of Natural Organic Matter in Water. Water (Switzerland), 2021, 13, 288.	2.7	20
98	Long symmetric high-pressure cell for magnetic measurements in superconducting quantum interference device magnetometer. Review of Scientific Instruments, 2006, 77, 073905.	1.3	19
99	Influence of the R-substituents on the properties of [Ni(R2pipdt)(dmit)] complexes and crystal structure where R = CH2C6H5. Dalton Transactions, 2007, , 5453.	3.3	19
100	Electropolymerisable dithiolene complexes. Coordination Chemistry Reviews, 2010, 254, 1549-1558.	18.8	19
101	Impact of Skeletal Isomerization of Ultrasmall Gold Clusters on Electrochemical Properties: Voltammetric Profiles of Nonspoked Octanuclear Clusters Journal of Physical Chemistry C, 2015, 119, 10995-10999.	3.1	19
102	Facile synthesis of BiSI and Bi ₁₃ S ₁₈ I ₂ as stable electrode materials for supercapacitor applications. Journal of Materials Chemistry C, 2020, 8, 13253-13262.	5.5	19
103	Polyiodide solid-state dye-sensitized solar cell produced from a standard liquid I ^{â~`} /I ₃ ^{â~`} electrolyte. Journal of Materials Chemistry A, 2020, 8, 19991-19999.	10.3	19
104	Field testing of low-cost titania-based photocatalysts for enhanced solar disinfection (SODIS) in rural India. Environmental Science: Water Research and Technology, 2020, 6, 809-816.	2.4	19
105	The molecular structure of silyl acetylene in a liquid crystal solution determined by analysis of direct couplings to hydrogen nuclei, compared with the gas phase structure from electron diffraction and microwave data. Journal of Molecular Structure, 1990, 216, 191-200.	3.6	18
106	Formation of iridium fluoroacyl complexes by reaction of iridium carbonyls with XeF2 and reactions of these to generate unusual acyl complexes. Journal of the Chemical Society Dalton Transactions, 1993, , 1031.	1.1	18
107	Electrodeposition as a superior route to a thin film molecular semiconductor. Chemical Science, 2011, 2, 316-320.	7.4	18
108	Thiourea Bismuth Iodide: Crystal Structure, Characterization and High Performance as an Electrode Material for Supercapacitors. Batteries and Supercaps, 2019, 2, 568-575.	4.7	18

7

#	Article	IF	CITATIONS
109	Structural features of indoline donors in D–A-π-A type organic sensitizers for dye-sensitized solar cells. Molecular Systems Design and Engineering, 2021, 6, 730-738.	3.4	18
110	Unique structural topologies involving metal–metal and metal–sulfur interactions: salts of [Ni(C3S5)2]xâ" with cis-anti-cis-dicyclohexyl-18-crown-6 complexed counter ions. Dalton Transactions RSC, 2001, , 1347-1351.	2.3	17
111	Design of Os ^{II} â€based Sensitizers for Dyeâ€Sensitized Solar Cells: Influence of Heterocyclic Ancillaries. ChemSusChem, 2013, 6, 1366-1375.	6.8	17
112	Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (<i>Daucus carota</i> L): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 2015, 63, 7066-7073.	5.2	17
113	Electrochromic Thin Films of the V-Cr Prussian Blue Analogue Molecular Magnet. Electrochimica Acta, 2017, 236, 97-103.	5.2	17
114	High Ambipolar Mobility in a Neutral Radical Gold Dithiolene Complex. Advanced Functional Materials, 2019, 29, 1904181.	14.9	17
115	In-situ microfluidic controlled, low temperature hydrothermal growth of nanoflakes for dye-sensitized solar cells. Scientific Reports, 2015, 5, 17750.	3.3	16
116	Monothiatruxeneâ€Based, Solutionâ€Processed Green, Skyâ€Blue, and Deepâ€Blue Organic Lightâ€Emitting Diodes with Efficiencies Beyond 5% Limit. Advanced Functional Materials, 2019, 29, 1807572.	14.9	16
117	Low temperature growth of hybrid ZnO/TiO ₂ nano-sculptured foxtail-structures for dye-sensitized solar cells. RSC Advances, 2014, 4, 61153-61159.	3.6	15
118	Highâ€Performance Porphyrinâ€Based Dyeâ€Sensitized Solar Cells with Iodine and Cobalt Redox Shuttles. ChemSusChem, 2017, 10, 938-945.	6.8	15
119	Beyond efficiency: phenothiazine, a new commercially viable substituent for hole transport materials in perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 8593-8598.	5.5	15
120	Cs ₃ Bi ₂ I ₉ as high-performance electrode material achieving high capacitance and stability in an economical supercapacitor. JPhys Energy, 2019, 1, 034001.	5.3	15
121	Suppressing Shallow Defect of Printable Mesoscopic Perovskite Solar Cells with a N719@TiO ₂ Inorganic–Organic Core–Shell Structured Additive. Solar Rrl, 2020, 4, 2000042.	5.8	15
122	A novel method to synthesize BiSI uniformly coated with rGO by chemical bonding and its application as a supercapacitor electrode material. Journal of Materials Chemistry A, 2021, 9, 15452-15461.	10.3	15
123	Spiro-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Nonradiative Decay for High-Quantum-Efficiency, Low-Roll-Off, Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 44628-44640.	8.0	15
124	[TTF]2[Fe(tdas)2]: a molecular conductor containing magnetic counter-ions. , 1998, 8, 93-96.		14
125	A unique new multiband molecular conductor: [BDTA][Ni(dmit)2]2. Chemical Communications, 2005, , 3204.	4.1	14
126	Diverse magnetic and electrical properties of molecular solids containing the thiazyl radical BDTA. Inorganica Chimica Acta, 2008, 361, 3761-3770.	2.4	14

#	Article	IF	CITATIONS
127	Six-co-ordinate 1,2-dithiolene complexes of tungsten(II) of the type [W(S–S)(CO)2L2] [S–Sâ€=â€C3S5, benzene-1,2-dithiolate or maleonitriledithiolate; L2â€=â€(PPh3)2, (PEt3)2 or Ph2P(CH2)2PPh2]. Journal of the Chemical Society Dalton Transactions, 1997, , 1429-1434.	1.1	13
128	Preparation, structure and properties of [Na(cis-anti-cis-dicyclohexyl-18-crown-6)][Ni(dmit)2]4·2Me2CO. Journal of Materials Chemistry, 1999, 9, 1233-1236.	6.7	13
129	Formation of stable neutral copper bis-dithiolene thin films by potentiostatic electrodeposition. Chemical Communications, 2011, 47, 7089.	4.1	13
130	Dinuclear Ru-Cu Complexes: Electronic Characterisation and Application to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2011, 2011, 589-596.	2.0	13
131	Die Strukturen der Anionen [W(CH ₃) ₇] ^{â^`} und [Re(CH ₃) ₈] ^{2â^`} . Angewandte Chemie, 1997, 109, 1410-1412.	2.0	12
132	Enhancement of hole mobility in hybrid titanium dioxide/poly(3-hexylthiophene) nanocomposites by employing an oligothiophene dye as an interface modifier. Journal of Materials Chemistry C, 2017, 5, 11758-11762.	5.5	12
133	Synthesis, structure and properties of new dithiolene complexes containing a 1,3,5-trithiepin ring. Journal of Materials Chemistry, 1998, 8, 319-324.	6.7	11
134	Geometrical Isomerism of Ru ^{II} Dyeâ€Sensitized Solar Cell Sensitizers and Effects on Photophysical Properties and Device Performances. ChemPhysChem, 2014, 15, 1207-1215.	2.1	11
135	Unprecedented Strong Panchromic Absorption from Proton‣witchable Iridium(III) Azoimidazolate Complexes. Chemistry - A European Journal, 2015, 21, 19128-19135.	3.3	11
136	Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11046-11053.	10.3	11
137	Molecular Complexes of Extended Sulphur Donor Ligands. Molecular Crystals and Liquid Crystals, 1996, 284, 39-48.	0.3	10
138	Control of copper(II) coordination geometry via supramolecular assembly of ligands in the solid state. Chemical Communications, 1999, , 1107-1108.	4.1	10
139	Giant Magnetoresistance in a Molecular Thin Film as an Intrinsic Property. Advanced Functional Materials, 2014, 24, 2383-2388.	14.9	10
140	Electrochemical deposition of highly-conducting metal dithiolene films. Dalton Transactions, 2016, 45, 9363-9368.	3.3	10
141	Monothiatruxene: a new versatile core for functional materials. RSC Advances, 2017, 7, 49532-49535.	3.6	10
142	Synthesis and characterization of [PPh4][M(diod)2], Mî—»Ni, Pd, Cu or Au; crystal structure of [PPh4][Cu(diod)2]. Polyhedron, 1997, 16, 1111-1117.	2.2	9
143	Synthesis and properties of [Pt(4-CO2CH3-py)2(dmit)] and [Pt(4-NO2-py)2(mnt)]: Exploring tunable Pt dyes. Polyhedron, 2009, 28, 4084-4090.	2.2	9
144	Electrochemical deposition as a unique solution processing method for insoluble organic optoelectronic materials. Journal of Materials Chemistry C, 2014, 2, 7232-7238.	5.5	9

#	Article	IF	CITATIONS
145	Atypical organic dyes used as sensitizers for efficient dye-sensitized solar cells. Frontiers of Optoelectronics, 2016, 9, 38-43.	3.7	9
146	Molecular and thin film properties of cobalt half-sandwich compounds for optoelectronic application. Physical Chemistry Chemical Physics, 2017, 19, 6768-6776.	2.8	9
147	A Quarterthiophene-Based Dye as an Efficient Interface Modifier for Hybrid Titanium Dioxide/Poly(3-hexylthiophene)(P3HT) Solar Cells. Polymers, 2019, 11, 1752.	4.5	9
148	Moussbauer Spectroscopic Study of the Reentrant Phase Transitions in TBA[Fe(tdas) ₂]. Molecular Crystals and Liquid Crystals, 1996, 286, 77-82.	0.3	8
149	Preparation and Structure of [Na.15-crown-5][Ni(mnt)2].H2O. Journal of Chemical Research Synopses, 1999, , 54-55.	0.3	8
150	Structural characteristics of dithiolene and nitronyl nitroxide salts: a unique oxygenation?deoxygenation process. CrystEngComm, 2000, 2, 121-124.	2.6	8
151	Directly-linked intramolecular donor–acceptor compounds of ferrocene and tetracyanoanthraquinodimethane. Inorganic Chemistry Communication, 2005, 8, 874-877.	3.9	8
152	Synthesis, structure and spectroscopic properties of a new class of polymerisable nickel dithiolenes. Journal of Materials Chemistry, 2009, 19, 6194.	6.7	8
153	Synthesis of a self-assembled copper(ii) metallo-rectangle with a guanosine-substituted terpyridine. Dalton Transactions, 2013, 42, 13813.	3.3	8
154	Bismuth titanate modified and immobilized TiO ₂ photocatalysts for water purification: broad pollutant scope, ease of re-use and mechanistic studies. Environmental Science: Water Research and Technology, 2018, 4, 2170-2178.	2.4	8
155	Pressure-induced non-innocence in bis(1,2-dionedioximato)Pt(<scp>ii</scp>) complexes: an experimental and theoretical study of their insulator–metal transitions. Physical Chemistry Chemical Physics, 2020, 22, 6677-6689.	2.8	8
156	Substrate and support materials for photocatalysis. , 2020, , 129-171.		8
157	Synthesis, crystal structure and properties of [N(C4H9)4][Ni(diod)2]: a potential precursor for new materials. Journal of Materials Chemistry, 1995, 5, 1731.	6.7	7
158	Structural and Magnetic Properties of [BDTA]2[MCl4] [M = Cu (1), Co (2), and Mn (3)], Revealing anS=1/2Square-Lattice Antiferromagnet with Weak Magnetic Exchange. Inorganic Chemistry, 2006, 45, 5767-5773.	4.0	7
159	Structural and magnetic properties of the binuclear [Co2{(OPPh2)2N}4] complex: Ferromagnetic coupling between the two S=3/2 Co(II) ions. Inorganic Chemistry Communication, 2009, 12, 615-618.	3.9	7
160	Synthesis and optical characterisation of triphenylamine-based hole extractor materials for CdSe quantum dots. Physical Chemistry Chemical Physics, 2013, 15, 7679.	2.8	7
161	Varying numbers and positions of carboxylate groups on Ru dyes for dye-sensitized solar cells: uptake on TiO2, cell performance and cell stability. RSC Advances, 2014, 4, 10165-10175.	3.6	7
162	Isomer Dependence of Efficiency and Charge Recombination in Dye‧ensitized Solar Cells Using Ru Complex Dyes Bearing Halogen Substituents. European Journal of Inorganic Chemistry, 2015, 2015, 4878-4884.	2.0	7

Neil Robertson

#	Article	IF	CITATIONS
163	Tuning the LUMO energy of 1,10-phenanthroline in α-diimine–dithiolate Ni(II) complex and enhancement of nonlinear optical properties. Inorganica Chimica Acta, 2015, 430, 114-119.	2.4	7
164	Microcavity-Modified Emission from Rare-Earth Ion-Based Molecular Complexes. ACS Photonics, 2022, 9, 2315-2321.	6.6	7
165	Indoor light harvesting lead-free 2-aminothiazolium bismuth iodide solar cells. Sustainable Energy and Fuels, 2022, 6, 3179-3186.	4.9	7
166	An infinite supramolecular array structure in metal dithiolate complexes: crystal structure of K(dibenzo-18-crown-6)[M(dmit)2](CH3CN)2Â(MÂ=ÂNi, Au). CrystEngComm, 2001, 3, 255-257.	2.6	6
167	Preparation, characterisation and complexation of a redox-active, soft-donor macrocycle. New Journal of Chemistry, 2004, 28, 98.	2.8	6
168	Synthesis of nitrogen and sulfur macrocycles with cis exogenous oxygen and sulfur donor atoms. Organic and Biomolecular Chemistry, 2005, 3, 4268.	2.8	6
169	Binuclear and trinuclear complexes of exoO2-cyclam. Dalton Transactions, 2007, , 2942.	3.3	6
170	Luminescent Polymer Films from Simple Processing of Coronene and Europium Precursors in Water. European Journal of Inorganic Chemistry, 2014, 2014, 3095-3100.	2.0	6
171	Naturally derived carbon for E. coli and arsenic removal from water in rural India. Environmental Technology and Innovation, 2020, 18, 100661.	6.1	6
172	Effect of fluorination on the crystal and electronic structure of organometallic cyclopentadienyl-phenylenediamino-cobalt complexes. Journal of Organometallic Chemistry, 2020, 918, 121277.	1.8	6
173	Donor-free oligothiophene based dyes with di-anchor architecture for dye-sensitized solar cells. Molecular Systems Design and Engineering, 2021, 6, 381-389.	3.4	6
174	Physical and photophysical properties of a linear copper(I) complex of a bulky acenapthene-based NHC ligand. Journal of Coordination Chemistry, 2021, 74, 361-379.	2.2	6
175	Evaluating the high-pressure structural response and crystal lattice interactions of the magnetically-bistable organic radical TTTA. CrystEngComm, 2021, 23, 4444-4450.	2.6	6
176	Crystal structure of (chloromethyl)trimethylammonium tetrafluoroborate, (ClCH2)(CH3)3NBF4. Zeitschrift Für Kristallographie, 1991, 195, 304-305.	1.1	5
177	The synthesis, molecular structure and fluxional properties of the 1-phenylpropyne complex [WI2(CO){Ph2P(CH2)PPh2}(η2-MeC2Ph)]. Inorganica Chimica Acta, 1998, 279, 65-68.	2.4	5
178	Star-shaped triarylamine-based hole-transport materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 779-787.	4.9	5
179	Nitrogen Doping and Carbon Coating Affects Substrate Selectivity of TiO ₂ Photocatalytic Organic Pollutant Degradation. ChemPhysChem, 2020, 21, 2643-2650.	2.1	5
180	Mesocrystal TiO ₂ films: <i>in situ</i> topotactic transformation and application in dye-sensitised solar cells. Sustainable Energy and Fuels, 2022, 6, 502-511.	4.9	5

#	Article	IF	CITATIONS
181	Electric and Magnetic Properties of the Radical Salts ET5[B10I10]·(CH2Cl2)0.8 and ET11[P2W18O62]·3H2O. Molecular Crystals and Liquid Crystals, 1999, 335, 43-52.	0.3	4
182	Isolation and characterisation of a new monodithiolate gold(III) complex. Polyhedron, 1999, 18, 1545-1548.	2.2	4
183	Ruthenium Dyes with Azo Ligands: Light Harvesting, Excited-State Properties and Relevance to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2015, 2015, 5864-5873.	2.0	4
184	A novel route to 4,4′-disubstituted bipyridyl ligands in ruthenium complexes for dye-sensitized solar cells. Polyhedron, 2015, 89, 45-48.	2.2	4
185	Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility. Physical Chemistry Chemical Physics, 2018, 20, 25738-25745.	2.8	4
186	Structural and Electronic Effects Due to Fluorine Atoms on Dibenzotetraaza-Annulenes Complexes. ACS Omega, 2018, 3, 10074-10083.	3.5	4
187	A New Range of Functionalised Tetrathiafulvalenes and their Cation Radical Salts: Synthetic and Solid State Studies. , 1999, , 437-449.		4
188	Understanding the dopant induced effects on SFX-MeOTAD for perovskite solar cells: a spectroscopic and computational investigation. Journal of Materials Chemistry C, 2021, 9, 16226-16239.	5.5	4
189	Lithium doped poly(3-hexylthiophene) for efficient hole transporter and sensitizer in metal free quaterthiophene dye treated hybrid solar cells. Scientific Reports, 2021, 11, 20157.	3.3	4
190	Preparation, structure and properties of the new TTF based organic donor BMTP-TTF: Unusual abstraction of sulphur from a seven membered ring. Tetrahedron Letters, 1995, 36, 7297-7300.	1.4	3
191	Synthesis, structure and properties of [M(diod)2]xâ^' complexes. Synthetic Metals, 1995, 71, 1955-1956.	3.9	3
192	Synthesis and complexation of tetrathiafulvalene derivatives functionalised with [15]aneS5 thioether crowns â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3913-3917.	1.1	3
193	The first extended, delocalised compounds using sandwich complexes as bis-1,2-dithiolene ligands: preparation and characterisation of [Ni(bdt)(CpRubdt)] and [Ni(CpRubdt)2][CF3SO3]. Inorganic Chemistry Communication, 2000, 3, 424-427.	3.9	3
194	Potassium bis(4,5-dimercapto-1,3-dithiole-2-thionato)nickelate 1,4,7,10,13,16-hexaoxa-2,3:11,12-dibenzocyclooctadeca-2,11-diene propanone solvate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1271-1273.	0.4	3
195	Synthesis, Structure, and Magnetic Properties of [Dithiazolylium]x[M(tdas)2] Salts. Molecular Crystals and Liquid Crystals, 2006, 452, 123-135.	0.9	3
196	High Second-Order NLO Response Exhibited by the First Example of Polymeric Film Incorporating a Diimine–Dithiolate Square-Planar Complex: The [Ni(<i>o</i> -phen)(bdt)]. Journal of Physical Chemistry C, 2016, 120, 19286-19294.	3.1	3
197	Fluorination induced electronic effects on a Pt(<scp>ii</scp>) square-planar complex of the o-phenylenediimine ligand. New Journal of Chemistry, 2017, 41, 5487-5492.	2.8	3
198	Electrochemical deposition of a semiconducting gold dithiolene complex with NIR absorption. Dalton Transactions, 2020, 49, 13786-13796.	3.3	3

#	Article	IF	CITATIONS
199	Probing the structural and electronic response of Magnus green salt compounds [Pt(NH2R)4][PtCl4] (R = H, CH3) to pressure. Physical Chemistry Chemical Physics, 2020, 22, 17668-17676.	2.8	3
200	Sequential ionic layer adsorption reaction formation of LaVO ₄ –TiO ₂ nanocomposites for photocatalytic water treatment. Materials Advances, 2020, 1, 271-280.	5.4	3
201	Contributions of inorganic chemistry to energy research. Dalton Transactions, 2011, 40, 3775.	3.3	2
202	Giant negative magnetoresistance in Ni(quinoline-8-selenoate) ₂ . Physical Chemistry Chemical Physics, 2018, 20, 514-519.	2.8	2
203	Tuning the optical bandgap and piezoresistance in iridium-based molecular semiconductors through ligand modification. Materials Advances, 2021, 2, 5135-5143.	5.4	2
204	Extended oligo-cyclopentadithiophene dyes for liquid and solid-state dye-sensitised solar cells. Sustainable Energy and Fuels, 2022, 6, 2358-2367.	4.9	2
205	Molecular Self-Assembly on Surfaces of Organic Conducting Salts:Â Epitaxial Monolayer Films of Naphthalene on the (001) Surface of (TMTSF)2PF6. Journal of Physical Chemistry B, 2000, 104, 7394-7402.	2.6	1
206	A new dithiolene complex magnet: [Ni(Cp*Rubdt) 2][CF 3 SO 3]. Polyhedron, 2003, 22, 2339-2342.	2.2	1
207	Effect of extending conjugation <i>via</i> thiophene-based oligomers on the excited state electron transfer rates to ZnO nanocrystals. Physical Chemistry Chemical Physics, 2019, 21, 6991-6998.	2.8	1
208	Novel D-A-Ï€-A1 Type Organic Sensitizers from 4,7-Dibromobenzo[d][1,2,3]thiadiazole and Indoline Donors for Dye-Sensitized Solar Cells. Molecules, 2022, 27, 4197.	3.8	1
209	Unusual Solid State Properties of Transition Metal Complexes of Sulphur-Donor Ligands. Molecular Crystals and Liquid Crystals, 1996, 285, 33-41.	0.3	Ο
210	A Comparison of Potential Molecular Wires as Components for Molecular Electronics. ChemInform, 2003, 34, no.	0.0	0
211	Crystal structure of 4-methoxycarbonyl-1,3-dithiole-2-thione, C5H4O2S3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2007, 222, .	0.3	0
212	Optical properties of lanthanide dyes for spectral conversion encapsulated in porous silica nanoparticles. Proceedings of SPIE, 2012, , .	0.8	0
213	Materials for near-IR light modulation. , 2016, , .		0
214	Building Comprehensive Networks to Address the Sustainable Energy Challenge with Focus on Rural India. ACS Energy Letters, 2017, 2, 2449-2451.	17.4	0
215	Evaluating the crystalline orbital hierarchy and high-pressure structure–property response of an extended-ligand platinum(<scp>ii</scp>) bis(1,2-dioximato) complex. CrystEngComm, 2021, 23, 6359-6364.	2.6	0
216	Preparation and Structure of [Na.15-crown-5][Ni(mnt)2].H2O. Journal of Chemical Research, 1999, 23, 54-55.	1.3	0

#	ARTICLE	IF	CITATIONS
217	Strategies Towards Efficient and Cost-effective Dye-sensitized Solar Cells. , 0, , .		0
218	Costâ€effective dyes based on lowâ€cost donors and Pdâ€free synthesis for dyeâ€sensitized solar cells. Solar Rrl, 0, , .	5.8	0