
Dirk Schübeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6811629/publications.pdf Version: 2024-02-01

DIDK SCHÂ1/BELED

#	Article	IF	CITATIONS
1	monaLisa: an R/Bioconductor package for identifying regulatory motifs. Bioinformatics, 2022, 38, 2624-2625.	1.8	33
2	Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nature Reviews Genetics, 2022, 23, 728-740.	7.7	43
3	Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity InÂVivo. Molecular Cell, 2021, 81, 255-267.e6.	4.5	79
4	Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nature Genetics, 2021, 53, 279-287.	9.4	106
5	Systematic dissection of transcriptional regulatory networks by genome-scale and single-cell CRISPR screens. Science Advances, 2021, 7, .	4.7	19
6	BANP opens chromatin and activates CpG-island-regulated genes. Nature, 2021, 596, 133-137.	13.7	49
7	A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nature Communications, 2020, 11, 2680.	5.8	97
8	Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science, 2020, 368, 1460-1465.	6.0	160
9	Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 2019, 22, 1345-1356.	7.1	144
10	CG dinucleotides enhance promoter activity independent of DNA methylation. Genome Research, 2019, 29, 554-563.	2.4	49
11	DNA damage detection in nucleosomes involves DNA register shifting. Nature, 2019, 571, 79-84.	13.7	72
12	Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature, 2019, 569, 136-140.	13.7	169
13	Non-mendelian Inheritance in Mammals Is Highly Constrained. Cell, 2018, 175, 1179-1181.	13.5	1
14	Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nature Communications, 2018, 9, 4048.	5.8	73
15	Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Molecular Cell, 2017, 67, 411-422.e4.	4.5	168
16	Evidence for Converging DNA Methylation Pathways in Placenta and Cancer. Developmental Cell, 2017, 43, 257-258.	3.1	26
17	Cis-regulatory landscapes of four cell types of the retina. Nucleic Acids Research, 2017, 45, 11607-11621.	6.5	39
18	Multidimensional pooled shRNA screens in human THP-1 cells identify candidate modulators of macrophage polarization. PLoS ONE, 2017, 12, e0183679.	1.1	52

Dirk Schübeler

#	Article	IF	CITATIONS
19	Binding of high mobility group A proteins to the mammalian genome occurs as a function of AT-content. PLoS Genetics, 2017, 13, e1007102.	1.5	16
20	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
21	Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. Immunity, 2016, 44, 527-541.	6.6	102
22	YAP1 Exerts Its Transcriptional Control via TEAD-Mediated Activation of Enhancers. PLoS Genetics, 2015, 11, e1005465.	1.5	296
23	Competition between DNA methylation and transcription factors determines binding of NRF1. Nature, 2015, 528, 575-579.	13.7	401
24	Function and information content of DNA methylation. Nature, 2015, 517, 321-326.	13.7	1,656
25	Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature, 2015, 520, 243-247.	13.7	566
26	ESCI award lecture: regulation, function and biomarker potential of DNA methylation. European Journal of Clinical Investigation, 2015, 45, 288-293.	1.7	12
27	Aging-Dependent Demethylation of Regulatory Elements Correlates with Chromatin State and Improved Î ² Cell Function. Cell Metabolism, 2015, 22, 619-632.	7.2	172
28	High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. ELife, 2014, 3, e04094.	2.8	66
29	Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3415-21.	3.3	121
30	DNA Sequence Explains Seemingly Disordered Methylation Levels in Partially Methylated Domains of Mammalian Genomes. PLoS Genetics, 2014, 10, e1004143.	1.5	64
31	Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nature Communications, 2014, 5, 5288.	5.8	272
32	Genomic patterns and context specific interpretation of DNA methylation. Current Opinion in Genetics and Development, 2014, 25, 85-92.	1.5	135
33	DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes and Development, 2014, 28, 652-664.	2.7	159
34	Twisting chromatin in stem cells. EMBO Journal, 2013, 32, 2304-2306.	3.5	1
35	Identification of active regulatory regions from DNA methylation data. Nucleic Acids Research, 2013, 41, e155-e155.	6.5	192
36	Methylation-Dependent and -Independent Genomic Targeting Principles of the MBD Protein Family. Cell, 2013, 153, 480-492.	13.5	312

Dirk Schübeler

#	Article	IF	CITATIONS
37	Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nature Structural and Molecular Biology, 2013, 20, 868-875.	3.6	298
38	Sox4 Is a Master Regulator of Epithelial-Mesenchymal Transition by Controlling Ezh2 Expression and Epigenetic Reprogramming. Cancer Cell, 2013, 23, 768-783.	7.7	415
39	Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Research, 2013, 23, 60-73.	2.4	108
40	Identification of Dlk1-Dio3 Imprinted Gene Cluster Noncoding RNAs as Novel Candidate Biomarkers for Liver Tumor Promotion. Toxicological Sciences, 2013, 131, 375-386.	1.4	62
41	Transcription Factor Occupancy Can Mediate Active Turnover of DNA Methylation at Regulatory Regions. PLoS Genetics, 2013, 9, e1003994.	1.5	194
42	Protein Complex Interactor Analysis and Differential Activity of KDM3 Subfamily Members Towards H3K9 Methylation. PLoS ONE, 2013, 8, e60549.	1.1	58
43	Chromatin measurements reveal contributions of synthesis and decay to steadyâ€state mRNA levels. Molecular Systems Biology, 2012, 8, 593.	3.2	48
44	Tracking the evolution of cancer methylomes. Nature Genetics, 2012, 44, 1173-1174.	9.4	6
45	Epigenetic Islands in a Genetic Ocean. Science, 2012, 338, 756-757.	6.0	45
46	A chromatin-modifying function of JNK during stem cell differentiation. Nature Genetics, 2012, 44, 94-100.	9.4	113
47	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	9.4	323
48	Target genes of Topoisomerase IIÎ ² regulate neuronal survival and are defined by their chromatin state. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E934-43.	3.3	142
49	DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 2011, 480, 490-495.	13.7	1,203
50	Identification of genetic elements that autonomously determine DNA methylation states. Nature Genetics, 2011, 43, 1091-1097.	9.4	351
51	Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice. PLoS ONE, 2011, 6, e18216.	1.1	75
52	Determinants and dynamics of genome accessibility. Nature Reviews Genetics, 2011, 12, 554-564.	7.7	403
53	Genomic Prevalence of Heterochromatic H3K9me2 and Transcription Do Not Discriminate Pluripotent from Terminally Differentiated Cells. PLoS Genetics, 2011, 7, e1002090.	1.5	119
54	Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nature Structural and Molecular Biology, 2010, 17, 679-687.	3.6	610

DIRK SCH¼BELER

#	Article	IF	CITATIONS
55	Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nature Structural and Molecular Biology, 2010, 17, 894-900.	3.6	100
56	Tackling the epigenome: challenges and opportunities for collaboration. Nature Biotechnology, 2010, 28, 1039-1044.	9.4	82
57	Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genetics, 2010, 42, 1093-1100.	9.4	527
58	Heterochromatin protein 1 (HP1) modulates replication timing of the <i>Drosophila</i> genome. Genome Research, 2010, 20, 771-780.	2.4	77
59	Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover asÂa Common Property of Neuronal MicroRNAs. Cell, 2010, 141, 618-631.	13.5	431
60	Chromatin in Multicolor. Cell, 2010, 143, 183-184.	13.5	3
61	Relics of repeat-induced point mutation direct heterochromatin formation in <i>Neurospora crassa</i> . Genome Research, 2009, 19, 427-437.	2.4	137
62	Chromatin state marks cell-type- and gender-specific replication of the <i>Drosophila</i> genome. Genes and Development, 2009, 23, 589-601.	2.7	141
63	Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends in Genetics, 2009, 25, 129-136.	2.9	271
64	Chromatin: Sub Out the Replacement. Current Biology, 2009, 19, R545-R547.	1.8	5
65	Methylation matters. Nature, 2009, 462, 296-297.	13.7	23
66	H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nature Structural and Molecular Biology, 2009, 16, 777-781.	3.6	125
67	Methylated DNA Immunoprecipitation (MeDIP). Methods in Molecular Biology, 2009, 507, 55-64.	0.4	203
68	New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood, 2009, 113, 2488-2497.	0.6	133
69	DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO Journal, 2008, 27, 2691-2701.	3.5	207
70	Lineage-Specific Polycomb Targets and De Novo DNA Methylation Define Restriction and Potential of Neuronal Progenitors. Molecular Cell, 2008, 30, 755-766.	4.5	802
71	Transcription-Coupled Methylation of Histone H3 at Lysine 36 Regulates Dosage Compensation by Enhancing Recruitment of the MSL Complex in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2008, 28, 3401-3409.	1.1	64
72	Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation. PLoS Biology, 2008, 6, e245.	2.6	496

DIRK SCH¼BELER

#	Article	IF	CITATIONS
73	RNA Polymerase II: Just Stopping By. Cell, 2007, 130, 16-18.	13.5	12
74	Enhancing genome annotation with chromatin. Nature Genetics, 2007, 39, 284-285.	9.4	9
75	Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 2007, 39, 457-466.	9.4	1,922
76	Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO Journal, 2007, 26, 4974-4984.	3.5	153
77	Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Current Opinion in Cell Biology, 2007, 19, 273-280.	2.6	338
78	Dosage compensation in high resolution: global up-regulation through local recruitment. Genes and Development, 2006, 20, 749-753.	2.7	8
79	A question of timing: emerging links between transcription and replication. Current Opinion in Genetics and Development, 2006, 16, 177-183.	1.5	65
80	Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 2005, 37, 853-862.	9.4	1,591
81	Methylation of histones: playing memory with DNA. Current Opinion in Cell Biology, 2005, 17, 230-238.	2.6	110
82	Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes and Development, 2005, 19, 1761-1766.	2.7	152
83	A New Map for Navigating the Yeast Epigenome. Cell, 2005, 122, 489-492.	13.5	9
84	DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17771-17776.	3.3	121
85	The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes and Development, 2004, 18, 1263-1271.	2.7	706
86	A Complex Chromatin Landscape Revealed by Patterns of Nuclease Sensitivity and Histone Modification within the Mouse Î ² -Globin Locus. Molecular and Cellular Biology, 2003, 23, 5234-5244.	1.1	143
87	DNA Methylation Density Influences the Stability of an Epigenetic Imprint and Dnmt3a/b-Independent De Novo Methylation. Molecular and Cellular Biology, 2002, 22, 7572-7580.	1.1	120
88	ChIPs of the β-globin locus: unraveling gene regulation within an active domain. Current Opinion in Genetics and Development, 2002, 12, 170-177.	1.5	84
89	Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genetics, 2002, 32, 438-442.	9.4	310
90	Nuclear compartmentalization and gene activity. Nature Reviews Molecular Cell Biology, 2000, 1, 137-143.	16.1	276

#	Article	IF	CITATIONS
91	Stabilized, long-term expression of heterodimeric proteins from tricistronic mRNA. Gene, 2000, 254, 1-8.	1.0	44
92	Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes and Development, 2000, 14, 940-950.	2.7	261
93	A sensitive transcription assay based on a simplified nuclear runon protocol. Technical Tips Online, 1997, 2, 140-142.	0.2	5