Valeria VadalÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers. IEICE Transactions on Electronics, 2022, E105.C, 449-456.	0.6	4
2	<scp>Equivalent ircuit</scp> extraction for gallium nitride electron devices: Direct versus <scp>optimization mpowered</scp> approaches. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35, .	1.9	3
3	An Improved Transistor Modeling Methodology Exploiting the Quasi-Static Approximation. IEEE Journal of the Electron Devices Society, 2021, 9, 378-386.	2.1	10
4	Guest editorial for the special issue on modeling of <scp>î¼mWave</scp> and <scp>mmWave</scp> electronic devices for wireless systems: Connecting technologies to applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, e2940.	1.9	0
5	A New Modeling Technique for Microwave Multicell Transistors Based on EM Simulations. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 3100-3110.	4.6	20
6	Scalability of Multifinger HEMT Performance. IEEE Microwave and Wireless Components Letters, 2020, 30, 869-872.	3.2	13
7	A streamlined drain-lag model for GaN HEMTs based on pulsed S-parameter measurements. International Journal of Microwave and Wireless Technologies, 2019, 11, 121-129.	1.9	1
8	GaN HEMT Model with Enhanced Accuracy under Back-off Operation. , 2019, , .		2
9	Temperature Dependent Small-Signal Neural Modeling of High-Periphery GaN HEMTs. , 2019, , .		4
10	High-periphery GaN HEMT modeling up to 65â€ [−] GHz and 200â€ [−] °C. Solid-State Electronics, 2019, 152, 11-16.	1.4	24
11	Nonlinear-Embedding Design Methodology Oriented to LDMOS Power Amplifiers. IEEE Transactions on Power Electronics, 2018, 33, 8764-8774.	7.9	18
12	Technology-Independent Analysis of the Double Current-Gain Peak in Millimeter-Wave FETs. IEEE Microwave and Wireless Components Letters, 2018, 28, 326-328.	3.2	18
13	A New Study on the Temperature and Bias Dependence of the Kink Effects in S22 and h21 for the GaN HEMT Technology. Electronics (Switzerland), 2018, 7, 353.	3.1	16
14	Currentâ€gain in FETs beyond cutâ€off frequency. Microwave and Optical Technology Letters, 2018, 60, 3023-3026.	1.4	2
15	Assessing GaN FET Performance Degradation in Power Amplifiers for Pulsed Radar Systems. IEEE Microwave and Wireless Components Letters, 2018, 28, 1035-1037.	3.2	12
16	Empowering GaN HEMT models: The gateway for power amplifier design. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2125.	1.9	40
17	A procedure for the extraction of a nonlinear microwave GaN FET model. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2151.	1.9	4
18	A New Dynamic-Bias Measurement Setup for Nonlinear Transistor Model Identification. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 218-228.	4.6	13

Valeria VadalÃ

#	Article	IF	CITATIONS
19	75-VDC GaN technology investigation from a degradation perspective. , 2017, , .		О
20	Waveform engineering: State-of-the-art and future trends (invited paper). International Journal of RF and Microwave Computer-Aided Engineering, 2017, 27, e21051.	1.2	13
21	Thermal characterization of high-power GaN HEMTs up to 65 CHz., 2017, , .		3
22	Evaluation of high-voltage transistor reliability under nonlinear dynamic operation. , 2017, , .		0
23	Low-frequency time-domain characterization for fast and reliable evaluation of microwave transistor performance. , 2016, , .		1
24	Fast extraction of accurate I/V models for harmonically-tuned power amplifier design. , 2016, , .		0
25	Dynamic-Bias S-Parameters: A New Measurement Technique for Microwave Transistors. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3946-3955.	4.6	18
26	Nonlinear modelling of GaN transistors: Behavioural and analytical approaches. , 2015, , .		1
27	A new description of fast charge-trapping effects in GaN FETs. , 2015, , .		2
28	Extraction of accurate GaN HEMT model for high-efficiency power amplifier design. , 2015, , .		2
29	C-band power amplifier design based on low-frequency waveform engineering. , 2015, , .		0
30	A Non-Quasi-Static FET Model Extraction Procedure Using the Dynamic-Bias Technique. IEEE Microwave and Wireless Components Letters, 2015, 25, 841-843.	3.2	9
31	Theoretical consideration on harmonic manipulated amplifiers based on experimental data. , 2015, , .		5
32	Nonlinear Embedding and De-embedding. , 2014, , 385-443.		1
33	GaN HEMT model extraction based on dynamic-bias measurements. , 2014, , .		2
34	Nonlinear modeling of LDMOS transistors for highâ€power FM transmitters. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 780-791.	1.9	13
35	X-Band GaN Power Amplifier for Future Generation SAR Systems. IEEE Microwave and Wireless Components Letters, 2014, 24, 266-268.	3.2	43
36	Evaluation of FET performance and restrictions by low-frequency measurements. , 2014, , .		6

Valeria VadalÃ

#	Article	IF	CITATIONS
37	Characterization of charge-trapping effects in GaN FETs through low-frequency measurements. , 2014, , .		1
38	Millimeter-Wave FET Nonlinear Modelling Based on the Dynamic-Bias Measurement Technique. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2526-2537.	4.6	29
39	Nonlinear model for 40-GHz cold-FET operation. , 2014, , .		4
40	Behavioral Modeling of GaN FETs: A Load-Line Approach. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 73-82.	4.6	67
41	A Load–Pull Characterization Technique Accounting for Harmonic Tuning. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 2695-2704.	4.6	50
42	Identification of the optimum operation for GaN HEMTs in high-power amplifiers. , 2013, , .		0
43	Microwave FET model identification based on vector intermodulation measurements. , 2013, , .		1
44	Linear versus nonlinear de-embedding: Experimental investigation. , 2013, , .		5
45	Extremely low-frequency measurements using an active bias tee. , 2013, , .		12
46	Transistor vector load-pull characterization for millimeter-wave power amplifier design. , 2012, , .		2
47	GaN power amplifier design exploiting wideband large-signal matching. , 2012, , .		3
48	Nonlinear embedding and deâ€embedding techniques for largeâ€signal fet measurements. Microwave and Optical Technology Letters, 2012, 54, 2835-2838.	1.4	16
49	A dual-source nonlinear measurement system oriented to the empirical characterization of low-frequency dispersion in microwave electron devices. Computer Standards and Interfaces, 2011, 33, 165-175.	5.4	1
50	Accurate GaN HEMT nonquasiâ€static largeâ€signal model including dispersive effects. Microwave and Optical Technology Letters, 2011, 53, 692-697.	1.4	33
51	On the evaluation of the high-frequency load line in active devices. International Journal of Microwave and Wireless Technologies, 2011, 3, 19-24.	1.9	9
52	Nonlinear Dispersive Modeling of Electron Devices Oriented to GaN Power Amplifier Design. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 710-718.	4.6	99
53	Characterization of GaN HEMT Low-Frequency Dispersion Through a Multiharmonic Measurement System. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2490-2496.	4.6	62

54 A low-cost and accurate technique for the prediction of load-pull contours. , 2010, , .

0

#	Article	IF	CITATIONS
55	A new empirical model for the characterization of low-frequency dispersive effects in FET electron devices accounting for thermal influence on the trapping state. , 2008, , .		3