Eric D Glendening

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6810912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comment on "Superposition of Waves or Densities: Which Is the Nature of Chemical Resonance?―[<i>J. Comput. Chem</i> . 2021, <i>42</i> , 412–417]. Journal of Computational Chemistry, 2021, 42, 1338-1340.	3.3	2
2	Coupled Cluster Studies of Platinum–Actinide Interactions. Thermochemistry of PtAnO ^{<i>n</i>+} (<i>n</i> = 0–2 and An = U, Np, Pu). Journal of Physical Chemistry A, 2021, 125, 5335-5345.	2.5	6
3	Pauling's Conceptions of Hybridization and Resonance in Modern Quantum Chemistry. Molecules, 2021, 26, 4110.	3.8	11
4	Coupled Cluster Study of the Interactions of AnO ₂ , AnO ₂ ⁺ , and AnO ₂ ²⁺ (An = U, Np) with N ₂ and CO. Inorganic Chemistry, 2020, 59, 4753-4763.	4.0	4
5	<i>NBO 7.0</i> : New vistas in localized and delocalized chemical bonding theory. Journal of Computational Chemistry, 2019, 40, 2234-2241.	3.3	249
6	Efficient optimization of natural resonance theory weightings and bond orders by gramâ€based convex programming. Journal of Computational Chemistry, 2019, 40, 2028-2035.	3.3	91
7	Resonance Theory Reboot. Journal of the American Chemical Society, 2019, 141, 4156-4166.	13.7	45
8	To Be or Not to Be: Demystifying the 2ndâ€Quantized Picture of Complex Electronic Configuration Patterns in Chemistry with Natural Polyâ€Electron Population Analysis. Journal of Computational Chemistry, 2019, 40, 1509-1520.	3.3	7
9	<i>NBO 6.0</i> : Natural bond orbital analysis program. Journal of Computational Chemistry, 2013, 34, 1429-1437.	3.3	1,269
10	Natural bond orbital methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 1-42.	14.6	1,153
11	<i>Ab initio</i> calculations of nitrogen oxide reactions: Formation of N2O2, N2O3, N2O4, N2O5, and N4O2 from NO, NO2, NO3, and N2O. Journal of Chemical Physics, 2007, 127, 164307.	3.0	52
12	The Inversion Potential of Ammonia: An Intrinsic Reaction Coordinate Calculation for Student Investigation. Journal of Chemical Education, 2007, 84, 1067.	2.3	25
13	Ab Initio Study of Cyclobutane:Â Molecular Structure, Ring-Puckering Potential, and Origin of the Inversion Barrier. Journal of Physical Chemistry A, 2005, 109, 635-642.	2.5	21
14	Influence of Resonance on the Acidity of Sulfides, Sulfoxides, Sulfones, and Their Group 16 Congeners. Journal of Physical Chemistry A, 2005, 109, 4966-4972.	2.5	18
15	Natural Energy Decomposition Analysis:  Extension to Density Functional Methods and Analysis of Cooperative Effects in Water Clusters. Journal of Physical Chemistry A, 2005, 109, 11936-11940.	2.5	245
16	H Atom and H2Elimination from Y + C2H2. Journal of Physical Chemistry A, 2004, 108, 10165-10172.	2.5	14
17	An intrinsic reaction coordinate calculation of the torsional potential in ethane: Comparison of the computationally and experimentally derived torsional transitions and the rotational barrier. Journal of Chemical Physics, 2003, 119, 11186-11191.	3.0	20
18	Mechanism of Acetyleneâ~'Vinylidene Rearrangement with Na, Al, and Y Atoms. Journal of Physical Chemistry A, 2002, 106, 7338-7347.	2.5	12

ERIC D GLENDENING

#	Article	IF	CITATIONS
19	Structure and Energetics of Gd(III) Interactions with Water and Ammonia. Journal of Physical Chemistry B, 2001, 105, 1489-1493.	2.6	8
20	Spektri-Sim: Interactive Simulation and Analysis of the Infrared Spectra of Diatomic Molecules. Journal of Chemical Education, 2001, 78, 824.	2.3	3
21	Natural resonance theory. I. General formalism. Journal of Computational Chemistry, 2000, 21, 411-413.	3.3	11
22	The Electronic Spectroscopy and Photophysics of Piperidine in the Vapor Phase. Journal of Physical Chemistry A, 2000, 104, 11733-11738.	2.5	14
23	Kinetics and Mechanism of the Reversible Dissociation of Ammonium Carbamate:  Involvement of Carbamic Acid. Journal of Physical Chemistry A, 1998, 102, 3934-3941.	2.5	47
24	Resonance in Formamide and Its Chalcogen Replacement Analogues:  A Natural Population Analysis/Natural Resonance Theory Viewpoint. Journal of the American Chemical Society, 1997, 119, 12940-12946.	13.7	76
25	Common Textbook and Teaching Misrepresentations of Lewis Structures. Journal of Chemical Education, 1995, 72, 583.	2.3	57
26	The role of delocalization in benzene. Journal of the American Chemical Society, 1993, 115, 10952-10957.	13.7	100
27	Observation of an Eclipsed Csp3-CH3 Bond in a Tricyclic Orthoamide; Experimental and Theoretical Evidence for CH⃛O Hydrogen Bonds. Angewandte Chemie International Edition in English, 1987, 26, 1175-1177.	4.4	87