
Eija Asmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6810184/publications.pdf Version: 2024-02-01

FUL ACMI

#	Article	IF	CITATIONS
1	Primary sources control the variability of aerosol optical properties in the Antarctic Peninsula. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1414571.	0.8	23
2	Changes in aerosol size distributions over the Indian Ocean during different meteorological conditions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1792756.	0.8	7
3	Aerosol particle characteristics measured in the United Arab Emirates and their response to mixing in the boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 481-503.	1.9	5
4	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	1.9	9
5	Observations of particle number size distributions and new particle formation in six Indian locations. Atmospheric Chemistry and Physics, 2022, 22, 4491-4508.	1.9	6
6	Snow albedo and its sensitivity to changes in deposited light-absorbing particles estimated from ambient temperature and snow depth observations at a high-altitude site in the Himalaya. Elementa, 2022, 10, .	1.1	0
7	Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula. Atmospheric Chemistry and Physics, 2022, 22, 8417-8437.	1.9	7
8	Bioaerosols in the atmosphere at two sites in Northern Europe in spring 2021: Outline of an experimental campaign. Environmental Research, 2022, 214, 113798.	3.7	1
9	Deposition of light-absorbing particles in glacier snow of the Sunderdhunga Valley, the southern forefront of the central Himalayas. Atmospheric Chemistry and Physics, 2021, 21, 2931-2943.	1.9	6
10	Asian Emissions Explain Much of the Arctic Black Carbon Events. Geophysical Research Letters, 2021, 48, e2020GL091913.	1.5	16
11	Late-spring and summertime tropospheric ozone and NO ₂ in western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chemistry and Physics, 2021, 21, 4677-4697.	1.9	11
12	New Particle Formation and Growth to Climateâ€Relevant Aerosols at a Background Remote Site in the Western Himalaya. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033267.	1.2	15
13	Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry. Atmospheric Chemistry and Physics, 2021, 21, 10625-10641.	1.9	12
14	Absorption instruments inter-comparison campaign at the Arctic Pallas station. Atmospheric Measurement Techniques, 2021, 14, 5397-5413.	1.2	12
15	Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic. Atmospheric Measurement Techniques, 2021, 14, 6723-6748.	1.2	19
16	What caused severe air pollution episode of November 2016 in New Delhi?. Atmospheric Environment, 2020, 222, 117125.	1.9	96
17	Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing. Atmospheric Chemistry and Physics, 2020, 20, 9491-9524.	1.9	22
18	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65

Eija Asmi

#	Article	IF	CITATIONS
19	Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow. Science Advances, 2019, 5, eaau8066.	4.7	123
20	Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant. Journal of the Air and Waste Management Association, 2019, 69, 97-108.	0.9	5
21	Driving Factors of Aerosol Properties Over the Foothills of Central Himalayas Based on 8.5ÂYears Continuous Measurements. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,421.	1.2	20
22	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	1.9	113
23	Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic. Atmospheric Measurement Techniques, 2018, 11, 1403-1416.	1.2	27
24	Seasonality of aerosol optical properties in the Arctic. Atmospheric Chemistry and Physics, 2018, 18, 11599-11622.	1.9	80
25	Size-selected black carbon mass distributions and mixing state in polluted and clean environments of northern India. Atmospheric Chemistry and Physics, 2017, 17, 371-383.	1.9	35
26	On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic. Atmospheric Measurement Techniques, 2017, 10, 5039-5062.	1.2	70
27	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
28	New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning. Atmospheric Chemistry and Physics, 2016, 16, 7485-7496.	1.9	17
29	Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic. Atmospheric Chemistry and Physics, 2016, 16, 1271-1287.	1.9	97
30	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	1.9	57
31	International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 2016, 97, 1033-1056.	1.7	54
32	Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll <i>a</i> from a mesocosm study. Atmospheric Chemistry and Physics, 2015, 15, 7961-7976.	1.9	47
33	Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere. Atmospheric Chemistry and Physics, 2015, 15, 3413-3428.	1.9	42
34	Black carbon concentrations and mixing state in the Finnish Arctic. Atmospheric Chemistry and Physics, 2015, 15, 10057-10070.	1.9	51
35	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	1.9	58
36	Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations. Environmental Research Letters, 2015, 10, 104005.	2.2	7

Eija Asmi

#	Article	IF	CITATIONS
37	Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network. Atmospheric Measurement Techniques, 2014, 7, 1351-1375.	1.2	64
38	Variations in tropospheric submicron particle size distributions across the European continent 2008–2009. Atmospheric Chemistry and Physics, 2014, 14, 4327-4348.	1.9	41
39	Pallas cloud experiment, PaCE 2012. , 2013, , .		3
40	Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 7473-7487.	1.9	46
41	Long-term observations of cluster ion concentration, sources and sinks in clear sky conditions at the high-altitude site of the Puy de Dôme, France. Atmospheric Chemistry and Physics, 2013, 13, 11573-11594.	1.9	18
42	Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 2013, 13, 895-916.	1.9	78
43	Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5, 657-685.	1.2	689
44	Estimation of aerosol particle number distribution with Kalman Filtering – Part 2: Simultaneous use of DMPS, APS and nephelometer measurements. Atmospheric Chemistry and Physics, 2012, 12, 11781-11793.	1.9	15
45	Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France. Atmospheric Chemistry and Physics, 2012, 12, 11589-11607.	1.9	53
46	Estimation of aerosol particle number distributions with Kalman Filtering – Part 1: Theory, general aspects and statistical validity. Atmospheric Chemistry and Physics, 2012, 12, 11767-11779.	1.9	12
47	Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12, 12037-12059.	1.9	285
48	Growth rates of nucleation mode particles in HyytiĀļ¤during 2003â^'2009: variation with particle size, season, data analysis method and ambient conditions. Atmospheric Chemistry and Physics, 2011, 11, 12865-12886.	1.9	173
49	Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010. Atmospheric Chemistry and Physics, 2011, 11, 12959-12972.	1.9	84
50	New particle formation infrequently observed in Himalayan foothills – why?. Atmospheric Chemistry and Physics, 2011, 11, 8447-8458.	1.9	54
51	Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmospheric Chemistry and Physics, 2011, 11, 5505-5538.	1.9	214
52	On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 11223-11242.	1.9	262
53	EUCAARI ion spectrometer measurements at 12 European sites $\hat{a} \in \hat{a}$ analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	1.9	248
54	Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4253-4271.	1.9	126

#	Article	IF	CITATIONS
55	Results of the first air ion spectrometer calibration and intercomparison workshop. Atmospheric Chemistry and Physics, 2009, 9, 141-154.	1.9	85