
Jung-Ho Wee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/68100/publications.pdf Version: 2024-02-01

LUNC-HO WEE

#	Article	IF	CITATIONS
1	Precipitation of potassium-based carbonates for carbon dioxide fixation via the carbonation and re-carbonation of KOH dissolved aqueous ethanol solutions. Chemical Engineering Journal, 2022, 427, 131669.	12.7	6
2	CO2 mineralization of double decomposition suspension of Ca-leached wollastonite solutions. Minerals Engineering, 2022, 176, 107315.	4.3	1
3	The Ratio of Chemical and Physical CO ₂ Absorption Capacity in Triethanolamine and Methyl-diethanolamine Solution Systems. Energy & Fuels, 2022, 36, 5805-5815.	5.1	5
4	CO ₂ Absorption Performance and Electrical Properties of 2-Amino-2-methyl-1-propanol Compared to Monoethanolamine Solutions as Primary Amine-Based Absorbents. Energy & Fuels, 2021, 35, 3197-3207.	5.1	7
5	Comparison of CO ₂ absorption performance between methylâ€di―ethanolamine and triâ€ethanolamine solution systems and its analysis in terms of amine molecules. , 2021, 11, 445-460.		5
6	Reâ€carbonation by recycling NaOHâ€dissolved ethanol solution for carbon dioxide fixation. Environmental Progress and Sustainable Energy, 2020, 39, 13300.	2.3	2
7	Correlation of CO2 absorption performance and electrical properties in a tri-ethanolamine aqueous solution compared to mono- and di-ethanolamine systems. Environmental Science and Pollution Research, 2020, 27, 44951-44968.	5.3	4
8	Carbon Dioxide Fixation by Precipitating NaHCO ₃ via Carbonation of NaOH-Dissolved Ethanol Aqueous Solution. Energy & Fuels, 2018, 32, 8614-8622.	5.1	9
9	Carbon Dioxide Fixation by Combined Method of Physical Absorption and Carbonation in NaOH-Dissolved Methanol. Energy & Fuels, 2017, 31, 1747-1755.	5.1	16
10	Estimation of CO ₂ Absorption Capacity via Correlating Measured Electrical Conductivity in a Diethanolamine Solvent System Compared to Monoethanolamine Solvent Systems. Journal of Chemical & Engineering Data, 2017, 62, 1570-1580.	1.9	2
11	Analysis of Energy Savings and CO2 Emission Reductions via Application of Smart Grid System. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 356-370.	1.1	2
12	Carbon Dioxide Fixation via the Synthesis of Sodium Ethyl Carbonate in NaOH-Dissolved Ethanol. Industrial & Engineering Chemistry Research, 2016, 55, 12111-12118.	3.7	12
13	Estimation of the Amount of CO2 Absorbed by Measuring the Variation of Electrical Conductivity in Highly Concentrated Monoethanolamine Solvent Systems. Journal of Chemical & Engineering Data, 2016, 61, 712-720.	1.9	9
14	Leaching and indirect mineral carbonation performance of coal fly ash-water solution system. Applied Energy, 2015, 142, 274-282.	10.1	43
15	Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution. Daehan Hwan'gyeong Gonghag Hoeji, 2015, 37, 597-606.	1.1	8
16	Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renewable and Sustainable Energy Reviews, 2014, 32, 178-191.	16.4	69
17	Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance. Applied Energy, 2014, 131, 40-47.	10.1	26
18	Carbon dioxide capture capacity of sodium hydroxide aqueous solution. Journal of Environmental Management, 2013, 114, 512-519.	7.8	175

Jung-Ho Wee

#	Article	IF	CITATIONS
19	A review on carbon dioxide capture and storage technology using coal fly ash. Applied Energy, 2013, 106, 143-151.	10.1	152
20	Estimation of Correlation between Electrical Conductivity and CO ₂ Absorption in a Monoethanolamine Solvent System. Journal of Chemical & Engineering Data, 2013, 58, 2381-2388.	1.9	15
21	A Study on Carbon Dioxide Capture Performance of KOH Aqueous Solution via Chemical Absorption. Daehan Hwan'gyeong Gonghag Hoeji, 2012, 34, 55-62.	1.1	14
22	Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent. Energy & Fuels, 2011, 25, 3825-3834.	5.1	98
23	Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources. Applied Energy, 2011, 88, 4252-4263.	10.1	55
24	A comparison of solar photovoltaics and molten carbonate fuel cells as commercial power plants. Renewable and Sustainable Energy Reviews, 2011, 15, 697-704.	16.4	9
25	CO2 emission and avoidance in mobile applications. Renewable and Sustainable Energy Reviews, 2010, 14, 814-820.	16.4	5
26	Contribution of fuel cell systems to CO2 emission reduction in their application fields. Renewable and Sustainable Energy Reviews, 2010, 14, 735-744.	16.4	50
27	Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews, 2007, 11, 1720-1738.	16.4	514
28	Effect of cerium addition to Ni–Cr anode electrode for molten carbonate fuel cells: Surface fractal dimensions, wettability and cell performance. Materials Chemistry and Physics, 2007, 101, 322-328.	4.0	27
29	A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries. Journal of Power Sources, 2007, 173, 424-436.	7.8	80
30	Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. Fuel Processing Technology, 2006, 87, 811-819.	7.2	107
31	Performance of a unit cell equipped with a modified catalytic reformer in direct internal reforming-molten carbonate fuel cell. Journal of Power Sources, 2006, 156, 288-293.	7.8	4
32	Overview of the effects of rare-earth elements used as additive materials in molten carbonate fuel cell systems. Journal of Materials Science, 2006, 41, 3585-3592.	3.7	19
33	A comparison of sodium borohydride as a fuel for proton exchange membrane fuel cells and for direct borohydride fuel cells. Journal of Power Sources, 2006, 155, 329-339.	7.8	136
34	Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells?. Journal of Power Sources, 2006, 161, 1-10.	7.8	149
35	Creep and sintering resistance of a Ce added anode electrode for molten carbonate fuel cell. Materials Chemistry and Physics, 2006, 98, 273-278.	4.0	19
36	Simulation of the performance for the direct internal reforming molten carbonate fuel cell. Part I: distributions of temperature, energy transfer and current density. International Journal of Energy Research, 2006, 30, 599-618.	4.5	6

JUNG-HO WEE

#	Article	IF	CITATIONS
37	Simulation of the performance for the direct internal reforming molten carbonate fuel cell. Part II: comparative distributions of reaction rates and gas compositions. International Journal of Energy Research, 2006, 30, 619-631.	4.5	4
38	The Surface Fractal Investigation of Anode Electrode of Molten Carbonate Fuel Cell. Studies in Surface Science and Catalysis, 2006, 159, 621-624.	1.5	0
39	Synthesis of calcium carbonate in a pure ethanol and aqueous ethanol solution as the solvent. Journal of Crystal Growth, 2005, 276, 680-687.	1.5	87
40	Synthesis of extraction resin containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester and its performance for separation of rare earths (Gd, Tb). Separation and Purification Technology, 2005, 43, 111-116.	7.9	21
41	Carbon deposition and alkali poisoning at each point of the reforming catalysts in DIR-MCFC. Journal of Applied Electrochemistry, 2005, 35, 521-528.	2.9	6
42	Evaluation of Ni–Ni3Al(5wt.%)–Al(3wt.%) as an anode electrode for molten carbonate fuel cell. Journal of Alloys and Compounds, 2005, 390, 155-160.	5.5	24
43	Synthesis of Ni3Al intermetallic powder in eutectic molten salts. Intermetallics, 2005, 13, 157-162.	3.9	7