José Rivera-Chávez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809886/publications.pdf

Version: 2024-02-01

623574 610775 29 605 14 24 citations g-index h-index papers 31 31 31 1056 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Crystal structures and study of interaction mode of bis-benzimidazole-benzene derivatives with DNA. Journal of Molecular Structure, 2022, 1249, 131582.	1.8	7
2	Protein tyrosine phosphatase 1B inhibitors from the fungus Malbranchea albolutea. Phytochemistry, 2021, 184, 112664.	1.4	14
3	Clerodane and 5 10-Seco-Clerodane-type diterpenoids from Salvia involucrata. Journal of Molecular Structure, 2021, 1237, 130367.	1.8	3
4	Absolute configuration and protein tyrosine phosphatase 1B inhibitory activity of xanthoepocin, a dimeric naphtopyrone from Penicillium sp. IQ-429. Bioorganic Chemistry, 2021, 115, 105166.	2.0	6
5	Syntaxin 6â€mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Molecular Carcinogenesis, 2020, 59, 62-72.	1.3	41
6	Phenethyisoquinoline alkaloids from the leaves of Androcymbium palaestinum. Fìtoterapìâ, 2020, 146, 104706.	1.1	6
7	One-step partial synthesis of (±)-asperteretone B and related hPTP1B1–400 inhibitors from butyrolactone I. Bioorganic and Medicinal Chemistry, 2020, 28, 115817.	1.4	5
8	Dimeric phenalenones from Talaromyces sp. (IQ-313) inhibit hPTP1B1-400: Insights into mechanistic kinetics from in vitro and in silico studies. Bioorganic Chemistry, 2020, 101, 103893.	2.0	16
9	Drug Leads from Endophytic Fungi: Lessons Learned via Scaled Production. Planta Medica, 2020, 86, 988-996.	0.7	9
10	Hydroxy- <i>neo</i> -Clerodanes and 5,10- <i>seco</i> - <i>neo</i> -Clerodanes from <i>Salvia decora</i> Journal of Natural Products, 2020, 83, 2212-2220.	1.5	6
11	Structural Elucidation of Malonylcommunol and $6\hat{l}^2$ -Hydroxy-trans-communic Acid, Two Undescribed Diterpenes from Salvia cinnabarina. First Examples of Labdane Diterpenoids from a Mexican Salvia Species. Molecules, 2020, 25, 1808.	1.7	2
12	Apoptosis Induced by (+)-Betulin Through NF-κB Inhibition in MDA-MB-231 Breast Cancer Cells. Anticancer Research, 2020, 40, 6637-6647.	0.5	14
13	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	5.2	92
14	Delitpyrones: α-Pyrone Derivatives from a Freshwater Delitschia sp Planta Medica, 2019, 85, 62-71.	0.7	14
15	Mycopyranone: A 8,8Ë^-binaphthopyranone with potent anti-MRSA activity from the fungus Phialemoniopsis sp Tetrahedron Letters, 2019, 60, 594-597.	0.7	7
16	Cuautepestalorin, a 7,8-Dihydrochromene–Oxoisochromane Adduct Bearing a Hexacyclic Scaffold from <i>Pestalotiopsis</i> sp. IQ-011. Organic Letters, 2019, 21, 3558-3562.	2.4	17
17	Prenylated Diresorcinols Inhibit Bacterial Quorum Sensing. Journal of Natural Products, 2019, 82, 550-558.	1.5	23
18	Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa. Fìtoterapìâ, 2018, 127, 201-206.	1.1	15

#	Article	IF	CITATIONS
19	Development and Utilization of a Palladium-Catalyzed Dehydration of Primary Amides To Form Nitriles. Organic Letters, 2018, 20, 6046-6050.	2.4	31
20	Secondary metabolites from the leaves of the medicinal plant goldenseal (Hydrastis canadensis). Phytochemistry Letters, 2017, 20, 54-60.	0.6	29
21	Biosynthesis of Fluorinated Peptaibols Using a Site-Directed Building Block Incorporation Approach. Journal of Natural Products, 2017, 80, 1883-1892.	1.5	24
22	Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: validation of their authenticity via in situ chemical analysis. RSC Advances, 2017, 7, 45733-45741.	1.7	29
23	In situ mass spectrometry monitoring of fungal cultures led to the identification of four peptaibols with a rare threonine residue. Phytochemistry, 2017, 143, 45-53.	1.4	15
24	Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data. Journal of Biomolecular Structure and Dynamics, 2016, 34, 78-91.	2.0	11
25	Calmodulin Inhibitors from Natural Sources: An Update. Journal of Natural Products, 2015, 78, 576-586.	1.5	15
26	î±-Glucosidase Inhibitors from a <i>Xylaria feejeensis</i> Associated with <i>Hintonia latiflora</i> Journal of Natural Products, 2015, 78, 730-735.	1.5	47
27	Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. Journal of Ethnopharmacology, 2014, 155, 416-425.	2.0	39
28	Thielavins A, J and K: $\hat{1}$ ±-Glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora. Phytochemistry, 2013, 94, 198-205.	1.4	41
29	Development of the Fluorescent Biosensor <i>h</i> Calmodulin (<i>h</i> CaM)L39C- <i>monobromobimane</i> (i>mBBr)/V91C- <i i="" mbbr<="">, a Novel Tool for Discovering New Calmodulin Inhibitors and Detecting Calcium. Journal of Medicinal Chemistry, 2011, 54, 3875-3884.</i>	2.9	22