Alexandra Raevskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809644/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	18.7	177
2	A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 9032-9042.	1.5	131
3	Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 126-134.	2.0	124
4	Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 13648-13658.	1.5	88
5	Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions. Journal of Colloid and Interface Science, 2006, 302, 133-141.	5.0	53
6	Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Advances, 2018, 8, 7550-7557.	1.7	51
7	Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Advances, 2016, 6, 100145-100157.	1.7	48
8	"Green―Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks. Scientific Reports, 2018, 8, 13677.	1.6	39
9	Annealing-induced structural transformation of gelatin-capped Se nanoparticles. Solid State Communications, 2008, 145, 288-292.	0.9	37
10	Origin of the Broadband Photoluminescence of Pristine and Cu ⁺ /Ag ⁺ -Doped Ultrasmall CdS and CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 10267-10277.	1.5	37
11	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
12	Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 169-174.	2.3	28
13	Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	28
14	Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu ₂ ZnSnS ₄ Photovoltaic Absorbers. ACS Applied Nano Materials, 2020, 3, 5706-5717.	2.4	25
15	Preparation and optical properties of highly luminescent colloidal single-layer carbon nitride. RSC Advances, 2015, 5, 46843-46849.	1.7	24
16	A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano Structures Nano Objects, 2018, 13, 146-154.	1.9	22
17	Photocatalytic H 2 production from aqueous solutions of hydrazine and its derivatives in the presence of nitric-acid-activated graphitic carbon nitride. Catalysis Today, 2017, 284, 229-235.	2.2	17
18	Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: A case study of CdSe and Ag-In-S. Journal of Luminescence, 2019, 215, 116630.	1.5	17

#	Article	IF	CITATIONS
19	Temperatureâ€Dependent Photoluminescence of Silverâ€Indiumâ€Sulfide Nanocrystals in Aqueous Colloidal Solutions. ChemPhysChem, 2019, 20, 1640-1648.	1.0	17
20	Phonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size. Journal of Physical Chemistry C, 2020, 124, 15511-15522.	1.5	17
21	Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties. RSC Advances, 2020, 10, 42178-42193.	1.7	16
22	Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. Journal of Chemical Physics, 2019, 151, 144701.	1.2	15
23	Composition-Dependent Optical Band Bowing, Vibrational, and Photochemical Behavior of Aqueous Glutathione-Capped (Cu, Ag)–In–S Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 19375-19388.	1.5	15
24	Photopolymerization of water-soluble acrylic monomers induced by colloidal CdS and Cd x Zn1 â^' x S nanoparticles. Colloid and Polymer Science, 2008, 286, 489-498.	1.0	14
25	Brightly luminescent colloidal Ag–In–S nanoparticles stabilized in aqueous solutions by branched polyethyleneimine. Journal of Luminescence, 2016, 178, 295-300.	1.5	14
26	High-Throughput Time-Resolved Photoluminescence Study of Composition- and Size-Selected Aqueous Ag–In–S Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 12185-12197.	1.5	13
27	"Green―synthesis of highly luminescent lead-free Cs ₂ Ag _{<i>x</i>} Na _{1â^²<i>x</i>} Bi _{<i>y</i>} In _{1â^²<i>y</i> perovskites. Journal of Materials Chemistry C, 2022, 10, 9938-9944.}	ub>Cl<	su b3 6
28	Raman study of flash-lamp annealed aqueous Cu ₂ ZnSnS ₄ nanocrystals. Beilstein Journal of Nanotechnology, 2019, 10, 222-227.	1.5	12
29	Highâ€Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100169.	1.2	12
30	Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals. Materials, 2021, 14, 3593.	1.3	9
31	Morphology, optical and catalytic properties of polyethyleneimine-stabilized Au nanoparticles. Journal of Molecular Catalysis A, 2015, 398, 35-41.	4.8	8
32	Active Plasmonic Colloid-to-Film-Coupled Cavities for Tailored Light–Matter Interactions. Journal of Physical Chemistry C, 2019, 123, 6745-6752.	1.5	8
33	Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Physical Chemistry Chemical Physics, 2021, 23, 20745-20764.	1.3	5
34	Spontaneous alloying of ultrasmall non-stoichiometric Ag–In–S and Cu–In–S quantum dots in aqueous colloidal solutions. RSC Advances, 2021, 11, 21145-21152.	1.7	5
35	Photoinduced Enhancement of Photoluminescence of Colloidal II-VI Nanocrystals in Polymer Matrices. Nanomaterials, 2020, 10, 2565.	1.9	5
36	Photoinduced transformations of optical properties of CdSe and Ag-In-S nanocrystals embedded in the films of polyvinyl alcohol. AIMS Materials Science, 2016, 3, 658-668.	0.7	5

#	Article	IF	CITATIONS
37	Influence of Thermal and Photochemical Treatments on Structure and Optical Properties of Single‣ayer Carbon Nitride. Physica Status Solidi (B): Basic Research, 2019, 256, 1800279.	0.7	4
38	Room-Temperature Electron Paramagnetic Resonance Study of a Copper-Related Defect in Cu ₂ ZnSnS ₄ Colloidal Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 9923-9929.	1.5	4
39	Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2020, , 67-122.	0.4	2
40	Copper-Content Dependent Structural and Electrical Properties of CZTS Films Formed by "Green― Colloidal Nanocrystals. Electronic Materials, 2022, 3, 136-153.	0.9	2