
Hong-Ming Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809338/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation on performance of MM/PBSA in nucleic acid-protein systems. Chinese Physics B, 2022, 31, 048701.	0.7	2
2	Loading of DOX into a tetrahedral DNA nanostructure: the corner does matter. Nanoscale Advances, 2022, 4, 754-760.	2.2	12
3	Assessing the Performance of Screening MM/PBSA in Protein–Ligand Interactions. Journal of Physical Chemistry B, 2022, 126, 1700-1708.	1.2	11
4	Efficient calculation of protein–ligand binding free energy using GFN methods: the power of the cluster model. Physical Chemistry Chemical Physics, 2022, 24, 14339-14347.	1.3	10
5	Interaction of serum proteins with SARS-CoV-2 RBD. Nanoscale, 2021, 13, 12865-12873.	2.8	14
6	Accurate Evaluation on the Interactions of SARS-CoV-2 with Its Receptor ACE2 and Antibodies CR3022/CB6*. Chinese Physics Letters, 2021, 38, 018701.	1.3	38
7	Improving the Performance of MM/PBSA in Protein–Protein Interactions via the Screening Electrostatic Energy. Journal of Chemical Information and Modeling, 2021, 61, 2454-2462.	2.5	40
8	Molecular Simulation Studies on the Interactions of Bilirubin at Different States with a Lipid Bilayer. Langmuir, 2021, 37, 11707-11715.	1.6	4
9	Reversible Immunoaffinity Interface Enables Dynamic Manipulation of Trapping Force for Accumulated Capture and Efficient Release of Circulating Rare Cells. Advanced Science, 2021, 8, e2102070.	5.6	12
10	Self-Assembled Saccharide-Functionalized Amphiphilic Metallacycles as Biofilms Inhibitor via "Sweet Talking― ACS Macro Letters, 2020, 9, 61-69.	2.3	15
11	Unbound Natural Organic Matter Competes with Nanoparticles for Internalization Receptors During Cell Uptake. Environmental Science & Technology, 2020, 54, 15215-15224.	4.6	7
12	Fabrication of Pascalâ€ŧriangle Lattice of Proteins by Inducing Ligand Strategy. Angewandte Chemie - International Edition, 2020, 59, 9617-9623.	7.2	14
13	Enhancing the targeting ability of nanoparticles <i>via</i> protected copolymers. Nanoscale, 2020, 12, 7804-7813.	2.8	12
14	Controlling ion transport in a C ₂ N-based nanochannel with tunable interlayer spacing. Physical Chemistry Chemical Physics, 2020, 22, 16855-16861.	1.3	10
15	Fluidic Multivalent Membrane Nanointerface Enables Synergetic Enrichment of Circulating Tumor Cells with High Efficiency and Viability. Journal of the American Chemical Society, 2020, 142, 4800-4806.	6.6	114
16	DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor–Ligand Interactions. Journal of the American Chemical Society, 2019, 141, 18910-18915.	6.6	122
17	Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS Nano, 2019, 13, 13474-13485.	7.3	32
18	Controlling the Interaction of Nanoparticles with Cell Membranes by the Polymeric Tether. Langmuir, 2019, 35, 12851-12857.	1.6	5

HONG-MING DING

#	Article	IF	CITATIONS
19	Radical-Induced Hierarchical Self-Assembly Involving Supramolecular Coordination Complexes in Both Solution and Solid States. Journal of the American Chemical Society, 2019, 141, 16014-16023.	6.6	62
20	Tailoring the component of protein corona via simple chemistry. Nature Communications, 2019, 10, 4520.	5.8	142
21	Designing a nanoparticle-containing polymeric substrate for detecting cancer cells by computer simulations. Nanoscale, 2019, 11, 2170-2178.	2.8	24
22	Glyco-Platelets with Controlled Morphologies via Crystallization-Driven Self-Assembly and Their Shape-Dependent Interplay with Macrophages. ACS Macro Letters, 2019, 8, 596-602.	2.3	63
23	Supramolecular Transformation of Metallacycle-linked Star Polymers Driven by Simple Phosphine Ligand-Exchange Reaction. Journal of the American Chemical Society, 2019, 141, 583-591.	6.6	46
24	Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations. Journal Physics D: Applied Physics, 2018, 51, 124002.	1.3	8
25	Competition between Supramolecular Interaction and Protein–Protein Interaction in Protein Crystallization: Effects of Crystallization Method and Small Molecular Bridge. Industrial & Engineering Chemistry Research, 2018, 57, 6726-6733.	1.8	10
26	Computational investigation on DNA sequencing using functionalized graphene nanopores. Physical Chemistry Chemical Physics, 2018, 20, 9063-9069.	1.3	23
27	Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. Nanoscale Horizons, 2018, 3, 6-27.	4.1	44
28	Ion transport through a nanoporous C ₂ N membrane: the effect of electric field and layer number. RSC Advances, 2018, 8, 36705-36711.	1.7	8
29	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. ACS Central Science, 2018, 4, 1344-1351.	5.3	163
30	Counteranion Modulated Crystal Growth and Function of One-Dimensional Homochiral Coordination Polymers: Morphology, Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 12143-12154.	1.9	17
31	Correction: Computational approaches to cell–nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. Nanoscale Horizons, 2018, 3, 447-447.	4.1	4
32	Facile synthesis of gold trisoctahedral nanocrystals with controllable sizes and dihedral angles. Nanoscale, 2018, 10, 11034-11042.	2.8	13
33	Computational Design of a Functionalized Substrate for Capturing Nanoparticles with Specific Size and Shape. Langmuir, 2018, 34, 9829-9835.	1.6	0
34	CO ₂ -switchable response of protein microtubules: behaviour and mechanism. Materials Chemistry Frontiers, 2018, 2, 1642-1646.	3.2	2
35	Highly Ordered Selfâ€Assembly of Native Proteins into 1D, 2D, and 3D Structures Modulated by the Tether Length of Assemblyâ€Inducing Ligands. Angewandte Chemie - International Edition, 2017, 56, 10691-10695.	7.2	59
36	Can dual-ligand targeting enhance cellular uptake of nanoparticles?. Nanoscale, 2017, 9, 8982-8989.	2.8	56

HONG-MING DING

#	Article	IF	CITATIONS
37	Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination polymers. Nature Communications, 2017, 8, 2131.	5.8	35
38	Water desalination by electrical resonance inside carbon nanotubes. Physical Chemistry Chemical Physics, 2016, 18, 28290-28296.	1.3	20
39	Design strategy of surface decoration for efficient delivery of nanoparticles by computer simulation. Scientific Reports, 2016, 6, 26783.	1.6	32
40	Interaction of peptides with cell membranes: insights from molecular modeling. Journal of Physics Condensed Matter, 2016, 28, 083001.	0.7	13
41	Designing new strategy for controlling DNA orientation in biosensors. Scientific Reports, 2015, 5, 14415.	1.6	5
42	Cellular Uptake: Theoretical and Computational Investigations of Nanoparticle–Biomembrane Interactions in Cellular Delivery (Small 9â€10/2015). Small, 2015, 11, 1014-1014.	5.2	1
43	Self-assembly of fullerenes and graphene flake: A molecular dynamics study. Carbon, 2015, 90, 34-43.	5.4	26
44	Modeling Stretching-Induced Immiscibility in Nonmonodisperse Polymer Systems. ACS Macro Letters, 2015, 4, 1033-1038.	2.3	8
45	Theoretical and Computational Investigations of Nanoparticle–Biomembrane Interactions in Cellular Delivery. Small, 2015, 11, 1055-1071.	5.2	232
46	Influence of different membrane environments on the behavior of cholesterol. RSC Advances, 2014, 4, 53090-53096.	1.7	2
47	Controlling water flow inside carbon nanotube with lipid membranes. Journal of Chemical Physics, 2014, 141, 094901.	1.2	13
48	Pumping of water by rotating chiral carbon nanotube. Nanoscale, 2014, 6, 13606-13612.	2.8	41
49	Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials, 2014, 35, 8703-8710.	5.7	105
50	Design maps for cellular uptake of gene nanovectors by computer simulation. Biomaterials, 2013, 34, 8401-8407.	5.7	40
51	Translocation of polyarginines and conjugated nanoparticles across asymmetric membranes. Soft Matter, 2013, 9, 1281-1286.	1.2	67
52	Controlling Cellular Uptake of Nanoparticles with pH-Sensitive Polymers. Scientific Reports, 2013, 3, 2804.	1.6	73
53	Interactions between Janus particles and membranes. Nanoscale, 2012, 4, 1116-1122.	2.8	110
54	Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano, 2012, 6, 1230-1238.	7.3	264

#	Article	IF	CITATIONS
55	Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2012, 33, 5798-5802.	5.7	163