Mathias Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	27.8	1,697
2	The target landscape of clinical kinase drugs. Science, 2017, 358, .	12.6	609
3	A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Molecular Systems Biology, 2019, 15, e8503.	7.2	576
4	Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature Methods, 2019, 16, 509-518.	19.0	539
5	A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. Molecular and Cellular Proteomics, 2015, 14, 2394-2404.	3.8	350
6	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
7	Clobal Proteome Analysis of the NCI-60 Cell Line Panel. Cell Reports, 2013, 4, 609-620.	6.4	276
8	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	19.0	198
9	ProteomicsDB. Nucleic Acids Research, 2018, 46, D1271-D1281.	14.5	197
10	Building ProteomeTools based on a complete synthetic human proteome. Nature Methods, 2017, 14, 259-262.	19.0	182
11	Meltome atlas—thermal proteome stability across the tree of life. Nature Methods, 2020, 17, 495-503.	19.0	152
12	Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nature Communications, 2020, 11, 1548.	12.8	148
13	ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Research, 2020, 48, D1153-D1163.	14.5	126
14	Optimized Chemical Proteomics Assay for Kinase Inhibitor Profiling. Journal of Proteome Research, 2015, 14, 1574-1586.	3.7	104
15	Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics. Molecular and Cellular Proteomics, 2014, 13, 3709-3715.	3.8	98
16	Peptide Level Turnover Measurements Enable the Study of Proteoform Dynamics. Molecular and Cellular Proteomics, 2018, 17, 974-992.	3.8	98
17	Mining the Human Tissue Proteome for Protein Citrullination. Molecular and Cellular Proteomics, 2018, 17, 1378-1391.	3.8	93
18	Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nature Communications, 2021, 12, 3346.	12.8	90

MATHIAS WILHELM

#	Article	IF	CITATIONS
19	ProteomeTools: Systematic Characterization of 21 Post-translational Protein Modifications by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Using Synthetic Peptides. Molecular and Cellular Proteomics, 2018, 17, 1850-1863.	3.8	78
20	Challenges in Clinical Metaproteomics Highlighted by the Analysis of Acute Leukemia Patients with Gut Colonization by Multidrug-Resistant Enterobacteriaceae. Proteomes, 2019, 7, 2.	3.5	71
21	PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration. Proteomics, 2017, 17, 1700263.	2.2	58
22	mz5: Space- and Time-efficient Storage of Mass Spectrometry Data Sets. Molecular and Cellular Proteomics, 2012, 11, O111.011379.	3.8	56
23	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	3.7	47
24	Proteome activity landscapes of tumor cell lines determine drug responses. Nature Communications, 2020, 11, 3639.	12.8	47
25	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	12.8	45
26	Pharmacoproteomic characterisation of human colon and rectal cancer. Molecular Systems Biology, 2017, 13, 951.	7.2	44
27	PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms. Molecular and Cellular Proteomics, 2019, 18, S126-S140.	3.8	43
28	Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs. ACS Chemical Biology, 2016, 11, 3400-3411.	3.4	42
29	Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology, 2022, 18, 812-820.	8.0	36
30	ProteomicsDB: toward a FAIR open-source resource for life-science research. Nucleic Acids Research, 2022, 50, D1541-D1552.	14.5	35
31	Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets. BMC Bioinformatics, 2012, 13, 214.	2.6	33
32	Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nature Communications, 2022, 13, 165.	12.8	33
33	Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Molecular and Cellular Proteomics, 2021, 20, 100076.	3.8	31
34	Identification of 7†000†9†000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC†MS/MS. Analytical Chemistry, 2021, 93, 8687-8692.	6.5	25
35	A Classifier Based on Accurate Mass Measurements to Aid Large Scale, Unbiased Glycoproteomics. Molecular and Cellular Proteomics, 2013, 12, 1017-1025.	3.8	23
36	Chemoproteomicsâ€Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors. ChemMedChem, 2017, 12, 999-1011.	3.2	23

MATHIAS WILHELM

#	Article	IF	CITATIONS
37	Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins. Cell Reports, 2015, 12, 183-189.	6.4	22
38	Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Analytical Chemistry, 2017, 89, 8884-8891.	6.5	22
39	Universal Spectrum Explorer: A Standalone (Web-)Application for Cross-Resource Spectrum Comparison. Journal of Proteome Research, 2021, 20, 3388-3394.	3.7	22
40	Chemoproteomic Selectivity Profiling of PIKK and PI3K Kinase Inhibitors. ACS Chemical Biology, 2019, 14, 655-664.	3.4	21
41	Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Scientific Data, 2020, 7, 334.	5.3	20
42	Mass spectrometry-based draft of the mouse proteome. Nature Methods, 2022, 19, 803-811.	19.0	19
43	Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells. Journal of Proteome Research, 2016, 15, 4490-4504.	3.7	18
44	BiPACE 2D—graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry. Bioinformatics, 2014, 30, 988-995.	4.1	14
45	Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics. Analytical and Bioanalytical Chemistry, 2017, 409, 1049-1057.	3.7	14
46	Prosit Transformer: A transformer for Prediction of MS2 Spectrum Intensities. Journal of Proteome Research, 2022, 21, 1359-1364.	3.7	10
47	SIMSI-Transfer: Software-Assisted Reduction of Missing Values in Phosphoproteomic and Proteomic Isobaric Labeling Data Using Tandem Mass Spectrum Clustering. Molecular and Cellular Proteomics, 2022, 21, 100238.	3.8	9
48	High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Reports, 2022, 38, 110604.	6.4	8
49	Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides. Analytical Chemistry, 2022, 94, 7181-7190.	6.5	8
50	Wilhelm et al. reply. Nature, 2017, 547, E23-E23.	27.8	7
51	Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. Journal of Proteome Research, 2022, 21, 1204-1207.	3.7	7
52	Predicting fragment intensities and retention time of iTRAQ―and TMTProâ€labeled peptides with Prositâ€TMT. Proteomics, 2022, , 2100257.	2.2	5
53	CiRCus: A Framework to Enable Classification of Complex High-Throughput Experiments. Journal of Proteome Research, 2019, 18, 1486-1493.	3.7	3