List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, characterization, and photochromism study of two spiropyran molecules with a terminal alkynyl functional group and their new 1,2,3-triazoline-containing derivatives. Journal of the Iranian Chemical Society, 2022, 19, 1661-1668.	1.2	1
2	Spiropyran and spironaphthoxazine based opto-chemical probes for instant ion detection with high selectivity and sensitivity to trace amounts of cyanide. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113626.	2.0	23
3	Continuous flow cationic polymerizations. Chemical Engineering Journal, 2022, 430, 132791.	6.6	13
4	Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100487.	5.6	76
5	Ready-to-use optical H2O2 sensor based on stimuli-responsive polyacrylic film and nanofibers containing spiropyran. Dyes and Pigments, 2022, 204, 110399.	2.0	1
6	Preparation of Photoswitchable Polyacrylic Nanocomposite Fibers Containing Au Nanorods and Spiropyran: Optical and Plasmonic Properties. Langmuir, 2022, 38, 8428-8441.	1.6	8
7	CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. Polymer, 2021, 212, 123250.	1.8	18
8	MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Molecular Pharmaceutics, 2021, 18, 275-284.	2.3	45
9	Spectral and kinetic manifestations of chain flexibility and polarity in the reversible photoisomerization of spironaphthoxazine-based acrylic copolymers. New Journal of Chemistry, 2021, 45, 9975-9983.	1.4	4
10	Magneto-responsive photochromic acrylic copolymer nanoparticles: An investigation into the mutual interactions and photoisomerization kinetics. Polymer, 2021, 218, 123524.	1.8	2
11	Rhodamine-based fluorescent polyacrylic nanoparticles: A highly selective and sensitive chemosensor for Fe (II) and Fe (III) cations in water. Journal of Environmental Chemical Engineering, 2021, 9, 105082.	3.3	25
12	Synthesis, characterization, and UV–visible study of some new photochromic formyl-containing 1′,3′,3′-trimethylspiro[chromene-2,2′-indoline] derivatives. Journal of the Iranian Chemical Society, 20 18, 3061-3067.	21,2	4
13	Spiropyran-based photoswitchable acrylic nanofibers: A stimuli-responsive substrate for light controlled C6 glioma cells attachment/detachment. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111731.	2.5	21
14	Dual thermo- and pH-responsive poly(N-isopropylacrylamide-co-(2-dimethylamino) ethyl) Tj ETQq0 0 0 rgBT /Overl Bulletin, 2020, 77, 3129-3142.	ock 10 Tf 1.7	50 227 Td 13
15	A thermo-kinetic study on acrylic copolymer nanocomposite particles containing GMA-modified nanosilica prepared via miniemulsion polymerization. Materials Chemistry and Physics, 2020, 240, 122126.	2.0	10
16	Enhanced radiosensitivity of LNCaP prostate cancer cell line by gold-photoactive nanoparticles modified with folic acid. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101602.	1.3	18
17	Hydrochromic and photoswitchable polyacrylic nanofibers containing spiropyran in eco-friendly ink-free rewriteable sheets with responsivity to humidity. Dyes and Pigments, 2020, 175, 108185.	2.0	40
18	Solvent-free and anticounterfeiting fluorescent inks based on epoxy-functionalized polyacrylic nanoparticles modified with Rhodamine B for cellulosic substrates. Journal of Industrial and Engineering Chemistry, 2020, 92, 287-296.	2.9	16

#	Article	IF	CITATIONS
19	Anticounterfeiting and photoluminescent cellulosic papers based on fluorescent acrylic copolymer nanoparticles containing coumarin. Carbohydrate Polymers, 2020, 247, 116756.	5.1	32
20	Solid-state photochromism of spironaphthoxazine loaded microcapsules with photo-patterning and thermo-regulating features. Journal of Colloid and Interface Science, 2020, 578, 379-389.	5.0	37
21	Progressive Readout Platform Based on Photoswitchable Polyacrylic Nanofibers Containing Spiropyran in Photopatterning with Instant Responsivity to Acid–Base Vapors. Macromolecules, 2020, 53, 1613-1622.	2.2	48
22	Alternating Magnetic Field and Ultrasound Waves as Size Controlling Parameters in Preparation of Superparamagnetic Fe ₃ O ₄ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2020, 20, 871-877.	0.9	5
23	Controlled Release and Photothermal Behavior of Multipurpose Nanocomposite Particles Containing Encapsulated Gold-Decorated Magnetite and 5-FU in Poly(lactide- <i>co</i> -glycolide). ACS Biomaterials Science and Engineering, 2019, 5, 4425-4434.	2.6	27
24	Controlled photoisomerization in acrylic copolymer nanoparticles based on spironaphthoxazine for reduced thermal reversion. European Polymer Journal, 2019, 119, 487-498.	2.6	16
25	The effect of PANI and MWCNT on magnetic and photocatalytic properties of substituted barium hexaferrite nanocomposites. Materials Chemistry and Physics, 2019, 236, 121786.	2.0	7
26	High performance cyanide sensing with tunable limit of detection by stimuli-responsive gold nanoparticles modified with poly (N,N-dimethylaminoethyl methacrylate). Talanta, 2019, 204, 198-205.	2.9	17
27	Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Advances in Colloid and Interface Science, 2019, 269, 152-186.	7.0	68
28	Anisotropic magnetite nanoclusters with enhanced magnetization as an efficient ferrofluid in mass transfer and liquid hyperthermia. New Journal of Chemistry, 2019, 43, 8044-8051.	1.4	6
29	Effect of Sn ⁴⁺ –Zn ²⁺ –Co ²⁺ Doping on Structural and Magnetic Properties of M-Type Barium Hexaferrites. IEEE Transactions on Magnetics, 2019, 55, 1-6.	1.2	8
30	Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. Radiation and Environmental Biophysics, 2018, 57, 133-142.	0.6	17
31	Polymerization induced shape-tuning and multi-triggered switchability of gold nanostructures. Polymer, 2018, 138, 302-306.	1.8	4
32	Preparation of acrylic PCM microcapsules with dual responsivity to temperature and magnetic field changes. European Polymer Journal, 2018, 101, 18-28.	2.6	32
33	A step-wise self-assembly approach in preparation of multi-responsive poly(styrene-co-methyl) Tj ETQq1 1 0.784 58-69.	314 rgBT / 5.0	Overlock 10 28
34	Improvement of UF/fiberglass mat properties used in roofing shingles through emulsion polymers and nanoclay addition. Iranian Polymer Journal (English Edition), 2018, 27, 67-76.	1.3	6
35	Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold–Photoactive Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 19483-19493.	4.0	82
36	Efficient approach to in-situ preparation of anisotropic and assemblable gold nanoparticles mediated by stimuli-responsive PDMAEMA. European Polymer Journal, 2018, 104, 106-114.	2.6	16

#	Article	IF	CITATIONS
37	Photochromic properties of stimuli-responsive cellulosic papers modified by spiropyran-acrylic copolymer in reusable pH-sensors. Carbohydrate Polymers, 2018, 200, 583-594.	5.1	72
38	Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Applied Energy, 2017, 190, 612-622.	5.1	89
39	Photoswitchable dual-color fluorescent particles from seeded emulsion polymerization and role of some affecting parameters on FRET process. European Polymer Journal, 2017, 88, 56-66.	2.6	35
40	Facile and fast photosensing of polarity by stimuli-responsive materials based on spiropyran for reusable sensors: a physico-chemical study on the interactions. Journal of Materials Chemistry C, 2017, 5, 6588-6600.	2.7	73
41	Effects of Chain Parameters on Kinetics of Photochromism in Acrylic–Spiropyran Copolymer Nanoparticles and Their Reversible Optical Data Storage. Langmuir, 2017, 33, 8023-8031.	1.6	42
42	Efficient modification of nanosilica particles in preparation of anti-scratch transparent polyacrylic films through miniemulsion polymerization. Polymer Bulletin, 2017, 74, 1879-1898.	1.7	7
43	Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization. Journal of Magnetism and Magnetic Materials, 2017, 426, 230-238.	1.0	31
44	Preparation of Fast Photoresponsive Cellulose and Kinetic Study of Photoisomerization. Journal of Physical Chemistry C, 2016, 120, 9985-9991.	1.5	49
45	Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties. Carbohydrate Polymers, 2016, 150, 131-138.	5.1	59
46	Redispersible PMMA latex nanoparticles containing spiropyran with photo-, pH- and CO2- responsivity. Polymer, 2016, 101, 274-283.	1.8	40
47	FRET-based acrylic nanoparticles with dual-color photoswitchable properties in DU145 human prostate cancer cell line labeling. Polymer, 2016, 98, 263-269.	1.8	36
48	Ultrasound-assisted emulsion polymerization of poly(methyl methacrylate- <i>co</i> -butyl acrylate): Effect of initiator content and temperature. Polymer Engineering and Science, 2016, 56, 214-221.	1.5	7
49	Preparation of acrylic/MWNTs nanocomposite latexes via ultrasonically-assisted emulsion polymerization: A comparative study. European Polymer Journal, 2016, 75, 104-115.	2.6	5
50	FRET Phenomenon in Photoreversible Dual-Color Fluorescent Polymeric Nanoparticles Based on Azocarbazole/Spiropyran Derivatives. Macromolecules, 2016, 49, 141-152.	2.2	79
51	Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films. Materials Science and Engineering C, 2016, 59, 1-9.	3.8	24
52	Preparation of acrylic/silica nanocomposites latexes with potential application in pressure sensitive adhesive. International Journal of Adhesion and Adhesives, 2015, 58, 21-27.	1.4	38
53	Chemical modification of TiO2 nanoparticles as an effective way for encapsulation in polyacrylic shell via emulsion polymerization. Progress in Organic Coatings, 2015, 88, 310-315.	1.9	15
54	Preparation of Stimuli-Responsive Functionalized Latex Nanoparticles: The Effect of Spiropyran Concentration on Size and Photochromic Properties. Langmuir, 2015, 31, 10672-10682.	1.6	77

#	Article	IF	CITATIONS
55	TPU/PCL/nanomagnetite ternary shape memory composites: studies on their thermal, dynamic-mechanical, rheological and electrical properties. Iranian Polymer Journal (English Edition), 2014, 23, 137-145.	1.3	18
56	Preparation of core–shell impact modifier particles for PVC with nanometric shell thickness through seeded emulsion polymerization. Iranian Polymer Journal (English Edition), 2014, 23, 27-35.	1.3	10
57	Optimization of parameters in preparation of PCM microcapsules based on melamine formaldehyde through dispersion polymerization. Colloid and Polymer Science, 2014, 292, 355-368.	1.0	50
58	Kinetic and thermodynamic correlation for prediction of morphology of nanocapsules with hydrophobic core via miniemulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 18-26.	2.3	12
59	Particle size and shell composition as effective parameters on MFFT for acrylic core–shell particles prepared via seeded emulsion polymerization. Progress in Organic Coatings, 2014, 77, 1874-1882.	1.9	17
60	Gold deposition on Fe ₃ O ₄ /(<i>co</i>)Poly(<i>N</i> â€octadecyl methacrylate) hybrid particles to obtain nanocomposites With ternary intrinsic features. Journal of Applied Polymer Science, 2013, 127, 3768-3777.	1.3	5
61	Evaluation of the cytotoxic effect of PLGA coated iron oxide nanoparticles as 5-fluorouracil carrier on DU 145 human prostate carcinoma cell line. , 2012, , .		0
62	Controlling the morphology and surface property of magnetic/cisplatin-loaded nanocapsules via W/O/W double emulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 408, 87-96.	2.3	37
63	RAFT-mediated emulsion polymerization of vinyl acetate: a challenge towards producing high molecular weight poly(vinyl acetate). Colloid and Polymer Science, 2012, 290, 1247-1255.	1.0	19
64	A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation. Polymer International, 2012, 61, 850-859.	1.6	39
65	Self-assembled nanomicelles using PLGA–PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values. Journal of Materials Science: Materials in Medicine, 2012, 23, 943-953.	1.7	49
66	Modifying montmorillonite clay via silane grafting and interfacial polycondensation for melt compounding of nylonâ€66 nanocomposite. Journal of Applied Polymer Science, 2012, 124, 1501-1510.	1.3	11
67	Preparation of Magnetic Chitosan Nanocomposite Particles and Their Susceptibility for Cellular Separation Applications. Journal of Colloid Science and Biotechnology, 2012, 1, 82-88.	0.2	39
68	New Approach for the Elucidation of PCM Nanocapsules through Miniemulsion Polymerization with an Acrylic Shell. Macromolecules, 2011, 44, 7405-7414.	2.2	96
69	Kinetic studies of the preparation of nanocomposites based on encapsulated Cloisite 30B in poly[styreneâ€ <i>co</i> â€(butyl acrylate)] via miniâ€emulsion polymerization. Polymer International, 2011, 60, 613-619.	1.6	10
70	Preparation of latexes based on amineâ€modified acrylic nanoparticles via seeded emulsion and miniemulsion polymerization. Advances in Polymer Technology, 2011, 30, 276-285.	0.8	5
71	Efficient Dispersion of Magnetite Nanoparticles in the Polyurethane Matrix Through Solution Mixing and Investigation of the Nanocomposite Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 213-219.	1.9	56
72	Physical and mechanical properties of nanocomposite barrier film containing encapsulated nanoclay. Journal of Applied Polymer Science, 2010, 118, 3284-3291.	1.3	22

#	Article	IF	CITATIONS
73	An Investigation into the UV-Photo-Oxidative Degradation of LDPE by Using Cobalt Naphthenate as Photosensitizer. Polymer-Plastics Technology and Engineering, 2010, 49, 718-724.	1.9	7
74	Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal, 2010, 159, 264-271.	6.6	261
75	Nanocomposite particles with core-shell morphology IV: an efficient approach to the encapsulation of Cloisite 30B by poly (styrene-co-butyl acrylate) and preparation of its nanocomposite latex via miniemulsion polymerization. Colloid and Polymer Science, 2009, 287, 725-732.	1.0	28
76	Nanocomposite particles with core–shell morphology III: preparation and characterization of nano Al2O3–poly(styrene–methyl methacrylate) particles via miniemulsion polymerization. Polymer Bulletin, 2009, 63, 329-340.	1.7	45
77	Preparation of the γâ€Al ₂ O ₃ /PANI nanocomposite via enzymatic polymerization. Polymer Composites, 2009, 30, 841-846.	2.3	19
78	An investigation into the improvement of adhesive strength of polyimides by incorporation of elastomeric nanoparticles. Journal of Colloid and Interface Science, 2009, 336, 872-878.	5.0	13
79	Nanocomposite particles with coreâ€shell morphology. I. Preparation and characterization of Fe ₃ O ₄ –poly(butyl acrylateâ€styrene) particles via miniemulsion polymerization. Journal of Applied Polymer Science, 2008, 110, 1242-1249.	1.3	54
80	Nanocomposite particles with core–shell morphology II. An investigation into the affecting parameters on preparation of Fe3O4-poly (butyl acrylate–styrene) particles via miniemulsion polymerization. European Polymer Journal, 2008, 44, 2482-2488.	2.6	35
81	Kinetic Study of Radical Polymerization VIII. A Comprehensive Study of Solution Copolymerization of Vinyl Acetate and Methyl Acrylate by1Hâ€NMR Spectroscopy. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 839-848.	1.2	9
82	Kinetic study of radical polymerization. VII. Investigation into the solution copolymerization of acrylonitrile and itaconic acid by real-time1H NMR spectroscopy. Journal of Applied Polymer Science, 2007, 103, 3253-3260.	1.3	18
83	Preparation of poly (styrene–methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization. An investigation into the compatiblization. European Polymer Journal, 2007, 43, 336-344.	2.6	111
84	Flame-Retardancy Improvement of Novel Styrene–Maleic Anhydride Based Copolymers. Journal of Polymer Research, 2007, 13, 413-419.	1.2	7
85	Kinetic study of radical polymerization. IV: Solid-melt state co-polymerization of acrylamide and sodium methacrylate by DSC. Designed Monomers and Polymers, 2006, 9, 439-451.	0.7	0
86	Kinetic Study of Radical Polymerization VI. Copolymer Composition and Kinetic Parameters for Coplymerization of Styreneâ€Itaconic Acid by Onâ€Line1Hâ€NMR. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1597-1608.	1.2	7
87	The Effect of Sodium Dodecyl Benzene Sulfonate on Particle Size in Suspension Polymerization of Styrene: A New Investigation. Polymer-Plastics Technology and Engineering, 2006, 45, 109-115.	1.9	4
88	The comparison between initial charge, shot and modified shot processes and their effects on macrostructure of particles in emulsion copolymerization of styrene–butadiene–acrylic acid. Reactive and Functional Polymers, 2006, 66, 247-254.	2.0	11
89	Kinetic study of radical polymerization. IV. Determination of reactivity ratio in copolymerization of styrene and itaconic acid by1H-NMR. Journal of Applied Polymer Science, 2006, 101, 2062-2069.	1.3	31
90	Kinetic Study of Radical Polymerization v. Determination of Reactivity Ratio in Copolymerization of Acrylonitrile and Itaconic Acid by1Hâ€NMR. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1583-1596.	1.2	15

#	Article	IF	CITATIONS
91	Kinetic study of radical polymerization. III. Solution polymerization of acrylamide by1H-NMR. Journal of Applied Polymer Science, 2004, 93, 2007-2013.	1.3	43
92	Investigation into the effect of carboxylic acid monomer on particle nucleation and growth in emulsifier-free emulsion copolymerization of styrene–butadiene–acrylic acid. Polymer, 2004, 45, 3233-3239.	1.8	32
93	Thermal and kinetic study of radical polymerization I. Melt state bulk polymerization of acrylamide by DSC. Journal of Applied Polymer Science, 2003, 87, 2335-2340.	1.3	16
94	Kinetic study of radical polymerization. II. Solid-state bulk polymerization of sodium methacrylate by differential scanning calorimetry. Journal of Applied Polymer Science, 2003, 90, 1648-1654.	1.3	9
95	A facile and efficient method for preparation of chiral supported poly(styrene–divinylbenzene) copolymers. Reactive and Functional Polymers, 2002, 50, 217-223.	2.0	3
96	Efficient and novel method for surface oxidation of polypropylene in the solid phase using microwave irradiation. Journal of Applied Polymer Science, 2001, 79, 1317-1323.	1.3	12
97	Microwave assisted oxidation of polyethylene under solid-state conditions with potassium permanganate. European Polymer Journal, 2001, 37, 1199-1206.	2.6	19
98	Synthesis and characterization of novel optically active and flame-retardant heterocyclic polyimides. Journal of Applied Polymer Science, 2000, 76, 240-248.	1.3	34
99	Synthesis of novel photoactive heterocyclic polyimides containing naphthalene moieties via cycloaddition reactions. Journal of Applied Polymer Science, 2000, 78, 527-536.	1.3	5
100	Emulsion polymerization of styrene and DEAEMA with a core-shell structure. Journal of Applied Polymer Science, 2000, 78, 1977-1985.	1.3	8
101	Highly diastereoselective synthesis of novel polymers via tandem Diels-Alder-ene reactions. Polymer International, 1999, 48, 109-116.	1.6	44
102	Asymmetric polymerization via cycloaddition reactions. Journal of Polymer Science Part A, 1999, 37, 1211-1219.	2.5	50