
Shuli Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809115/publications.pdf Version: 2024-02-01

SHULLIANC

#	Article	IF	CITATIONS
1	Preparation of freezeâ€dried bioluminescent bacteria and their application in the detection of acute toxicity of bisphenol A and heavy metals. Food Science and Nutrition, 2022, 10, 1841-1853.	3.4	7
2	Fluorescent indicators for live-cell and in vitro detection of inorganic cadmium dynamics. Journal of Fluorescence, 2022, 32, 1397-1404.	2.5	0
3	Improving Thermostability and Catalytic Activity of Glycosyltransferase From Panax ginseng by Semi-Rational Design for Rebaudioside D Synthesis. Frontiers in Bioengineering and Biotechnology, 2022, 10, 884898.	4.1	6
4	Acute and Chronic Toxicity of Binary Mixtures of Bisphenol A and Heavy Metals. Toxics, 2022, 10, 255.	3.7	4
5	Heterologous production of $\hat{l}\pm$ -Carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. Bioresource Technology, 2021, 341, 125782.	9.6	17
6	A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for <i>Pichia pastoris</i> . ACS Synthetic Biology, 2021, 10, 2927-2937.	3.8	17
7	Production of lycopene by metabolically engineered <i>Pichia pastoris</i> . Bioscience, Biotechnology and Biochemistry, 2020, 84, 463-470.	1.3	27
8	Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Scientific Reports, 2020, 10, 15175.	3.3	27
9	High-Level Expression and Biochemical Properties of A Thermo-Alkaline Pectate Lyase From Bacillus sp. RN1 in Pichia pastoris With Potential in Ramie Degumming. Frontiers in Bioengineering and Biotechnology, 2020, 8, 850.	4.1	18
10	Overexpression of the regulatory subunit of protein kinase A increases heterologous protein expression in Pichia pastoris. Biotechnology Letters, 2020, 42, 2685-2692.	2.2	1
11	Construction and screening of a glycosylphosphatidylinositol protein deletion library in Pichia pastoris. BMC Microbiology, 2020, 20, 262.	3.3	3
12	Engineering the regulatory site of the catalase promoter for improved heterologous protein production in Pichia pastoris. Biotechnology Letters, 2020, 42, 2703-2709.	2.2	11
13	Multiple cellular responses guarantee yeast survival in presence of the cell membrane/wall interfering agent sodium dodecyl sulfate. Biochemical and Biophysical Research Communications, 2020, 527, 276-282.	2.1	7
14	Enhancing the substrate tolerance of DszC by a combination of alanine scanning and site-directed saturation mutagenesis. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 395-402.	3.0	2
15	Genome-wide screening of Saccharomyces cerevisiae deletion mutants reveals cellular processes required for tolerance to the cell wall antagonist calcofluor white. Biochemical and Biophysical Research Communications, 2019, 518, 1-6.	2.1	10
16	Deletion of Gcw13 represses autophagy in Pichia pastoris cells grown in methanol medium with sufficient amino acids. Biotechnology Letters, 2019, 41, 1423-1431.	2.2	1
17	A kinetic model to optimize and direct the dose ratio of Dsz enzymes in the 4S desulfurization pathway in vitro and in vivo. Biotechnology Letters, 2019, 41, 1333-1341.	2.2	2
18	Combined strategies for engineering a novel whole-cell biocatalyst of Candida rugosa lipase with improved characteristics. Biochemical Engineering Journal, 2019, 151, 107337.	3.6	5

Shuli Liang

#	Article	IF	CITATIONS
19	Improved Efficiency of the Desulfurization of Oil Sulfur Compounds inEscherichia coliUsing a Combination of Desensitization Engineering and DszC Overexpression. ACS Synthetic Biology, 2019, 8, 1441-1451.	3.8	15
20	Enhancing co-translational folding of heterologous protein by deleting non-essential ribosomal proteins in Pichia pastoris. Biotechnology for Biofuels, 2019, 12, 38.	6.2	7
21	Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins. Microbial Cell Factories, 2019, 18, 207.	4.0	8
22	RNA-Seq analysis of global transcriptomic changes suggests a roles for the MAPK pathway and carbon metabolism in cell wall maintenance in a Saccharomyces cerevisiae FKS1 mutant. Biochemical and Biophysical Research Communications, 2018, 500, 603-608.	2.1	10
23	Improved production and characterization of Volvariella volvacea Endoglucanase 1 expressed in Pichia pastoris. Protein Expression and Purification, 2018, 152, 107-113.	1.3	6
24	Kinetic resolution of sec -alcohols catalysed by Candida antarctica lipase B displaying Pichia pastoris whole-cell biocatalyst. Enzyme and Microbial Technology, 2018, 110, 8-13.	3.2	12
25	Deletion of the GCW13 gene derepresses Gap1-dependent uptake of amino acids in Pichia pastoris grown on methanol as the sole carbon source. Biochemical and Biophysical Research Communications, 2018, 501, 226-231.	2.1	4
26	Recycling of a selectable marker with a self-excisable plasmid in Pichia pastoris. Scientific Reports, 2017, 7, 11113.	3.3	18
27	Accurate analysis of fusion expression of <i>Pichia pastoris</i> glycosylphosphatidylinositol-modified cell wall proteins. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1355-1365.	3.0	7
28	Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity. Applied Microbiology and Biotechnology, 2016, 100, 1789-1798.	3.6	8
29	Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B. Applied Microbiology and Biotechnology, 2016, 100, 5883-5895.	3.6	29
30	Overexpression of a Novel Thermostable and Chloride-Tolerant Laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and Its Application in Synthetic Dye Decolorization. PLoS ONE, 2015, 10, e0119833.	2.5	48
31	Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris. BMC Biotechnology, 2015, 15, 88.	3.3	41
32	Citrobacter amalonaticus Phytase on the Cell Surface of Pichia pastoris Exhibits High pH Stability as a Promising Potential Feed Supplement. PLoS ONE, 2014, 9, e114728.	2.5	10
33	Identification and characterization of P GCW14 : a novel, strong constitutive promoter of Pichia pastoris. Biotechnology Letters, 2013, 35, 1865-1871.	2.2	47
34	Synthesisof fructose laurate esters catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst in a non-aqueous system. Biotechnology and Bioprocess Engineering, 2013, 18, 365-374.	2.6	22
35	Key regulatory elements of a strong constitutive promoter, P GCW14 , from Pichia pastoris. Biotechnology Letters, 2013, 35, 2113-2119.	2.2	12
36	Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnology Letters, 2013, 35, 97-105.	2.2	37

Shuli Liang

#	Article	IF	CITATIONS
37	Screening for Glycosylphosphatidylinositol-Modified Cell Wall Proteins in Pichia pastoris and Their Recombinant Expression on the Cell Surface. Applied and Environmental Microbiology, 2013, 79, 5519-5526.	3.1	43
38	Comprehensive structural annotation of Pichia pastoris transcriptome and the response to various carbon sources using deep paired-end RNA sequencing. BMC Genomics, 2012, 13, 738.	2.8	59
39	Internal ribosome entry site mediates protein synthesis in yeast Pichia pastoris. Biotechnology Letters, 2012, 34, 957-964.	2.2	10