
Robert C Schuurink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling. New Phytologist, 2022, 233, 1220-1237.	3.5	21
2	Duplication and Specialization of <i>NUDX1</i> in <i>Rosaceae</i> Led to Geraniol Production in Rose Petals. Molecular Biology and Evolution, 2022, 39, .	3.5	13
3	ODORANT1 targets multiple metabolic networks in petunia flowers. Plant Journal, 2022, 109, 1134-1151.	2.8	14
4	Insects Co-opt Host Genes to Overcome Plant Defences Faculty Reviews, 2022, 11, 10.	1.7	0
5	Keeping the shoot above water – submergence triggers antithetical growth responses in stems and petioles of watercress (<i>Nasturtium officinale</i>). New Phytologist, 2021, 229, 140-155.	3.5	25
6	Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing. Frontiers in Plant Science, 2021, 12, 641457.	1.7	16
7	Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs. Molecular Plant, 2021, 14, 820-828.	3.9	20
8	Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta, 2021, 254, 11.	1.6	13
9	Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC Plant Biology, 2021, 21, 315.	1.6	19
10	Spotlight on the Roles of Whitefly Effectors in Insect–Plant Interactions. Frontiers in Plant Science, 2021, 12, 661141.	1.7	19
11	Editorial overview: Biotechnology to help understand and harness biotic interactions in plants. Current Opinion in Biotechnology, 2021, 70, vi-viii.	3.3	0
12	Life stage-dependent genetic traits as drivers of plant–herbivore interactions. Current Opinion in Biotechnology, 2021, 70, 234-240.	3.3	4
13	SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. Plant Physiology, 2020, 182, 361-377.	2.3	62
14	Glandular trichomes: microâ€organs with model status?. New Phytologist, 2020, 225, 2251-2266.	3.5	131
15	Functional diversification in the <i>Nudix hydrolase</i> gene family drives sesquiterpene biosynthesis in <i>Rosa</i> × <i>wichurana</i> . Plant Journal, 2020, 104, 185-199.	2.8	21
16	Emission and Perception of Plant Volatiles. , 2020, , 251-267.		3
17	The role of volatiles in plant communication. Plant Journal, 2019, 100, 892-907.	2.8	180
18	Soil Salinity Limits Plant Shade Avoidance. Current Biology, 2019, 29, 1669-1676.e4.	1.8	52

2

#	Article	IF	CITATIONS
19	Thrips advisor: exploiting thrips-induced defences to combat pests on crops. Journal of Experimental Botany, 2018, 69, 1837-1848.	2.4	66
20	Green leaf volatile production by plants: a metaâ€analysis. New Phytologist, 2018, 220, 666-683.	3.5	247
21	Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia, 2018, 186, 101-113.	0.9	41
22	A Robust Functional Genomics Approach to Identify Effector Genes Required for Thrips (Frankliniella) Tj ETQq0 0	0 rgBT /O\ 1.7	verlock 10 Tf
23	Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. International Journal of Molecular Sciences, 2018, 19, 3265.	1.8	22
24	SIMYC1 Regulates Type VI Glandular Trichome Formation and Terpene Biosynthesis in Tomato Glandular Cells. Plant Cell, 2018, 30, 2988-3005.	3.1	115
25	Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	13
26	A stress recovery signaling network for enhanced flooding tolerance in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6085-E6094.	3.3	140
27	Overcompensation of herbivore reproduction through hyperâ€suppression of plant defenses in response to competition. New Phytologist, 2017, 214, 1688-1701.	3.5	39
28	<i>Arabidopsis</i> JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6388-6393.	3.3	165
29	Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. Plant Molecular Biology, 2017, 95, 399-409.	2.0	12
30	Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. Plant Cell, 2017, 29, 2086-2105.	3.1	220
31	Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science, 2017, 356, 1386-1388.	6.0	202
32	Small RNAs from Bemisia tabaci Are Transferred to Solanum lycopersicum Phloem during Feeding. Frontiers in Plant Science, 2016, 7, 1759.	1.7	16
33	Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation. Current Biology, 2016, 26, 3303-3312.	1.8	76
34	My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. Trends in Plant Science, 2016, 21, 884-894.	4.3	77
35	Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Science, 2016, 252, 300-310.	1.7	34

Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature
Plants, 2016, 2, 16074.
4.7 311

ROBERT C SCHUURINK

#	Article	IF	CITATIONS
37	Salivary proteins of spider mites suppress defenses in <i>Nicotiana benthamiana</i> and promote mite reproduction. Plant Journal, 2016, 86, 119-131.	2.8	149
38	<i>CCoAOMT</i> Down-Regulation Activates Anthocyanin Biosynthesis in Petunia. Plant Physiology, 2016, 170, 717-731.	2.3	51
39	Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis. Plant Physiology, 2016, 170, 891-906.	2.3	26
40	<scp>WRKY</scp> 40 and <scp>WRKY</scp> 6 act downstream of the green leaf volatile <i>E</i> â€2â€hexenal in Arabidopsis. Plant Journal, 2015, 83, 1082-1096.	2.8	58
41	Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants. PLoS ONE, 2015, 10, e0128808.	1.1	19
42	Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytologist, 2015, 205, 828-840.	3.5	169
43	An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. Plant Physiology, 2015, 168, 598-614.	2.3	98
44	Whiteflies Glycosylate Salicylic Acid and Secrete the Conjugate via Their Honeydew. Journal of Chemical Ecology, 2015, 41, 52-58.	0.9	31
45	Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biology, 2014, 12, 98.	1.7	82
46	Geranyllinalool Synthases in Solanaceae and Other Angiosperms Constitute an Ancient Branch of Diterpene Synthases Involved in the Synthesis of Defensive Compounds Â. Plant Physiology, 2014, 166, 428-441.	2.3	36
47	Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant Molecular Biology, 2014, 84, 345-357.	2.0	45
48	RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics, 2014, 15, 402.	1.2	123
49	E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Frontiers in Plant Science, 2013, 4, 74.	1.7	45
50	Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science, 2013, 4, 539.	1.7	144
51	Green Leaf Volatiles: A Plant's Multifunctional Weapon against Herbivores and Pathogens. International Journal of Molecular Sciences, 2013, 14, 17781-17811.	1.8	355
52	Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores. International Journal of Molecular Sciences, 2012, 13, 17077-17103.	1.8	408
53	Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals. Journal of Experimental Botany, 2012, 63, 3157-3171.	2.4	35
54	A model for combinatorial regulation of the petunia R2R3-MYB transcription factorODORANT1. Plant Signaling and Behavior, 2012, 7, 518-520.	1.2	8

#	Article	IF	CITATIONS
55	Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20124-20129.	3.3	200
56	A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petunia×hybrida cv. â€~Mitchell Diploid'Âflower. Journal of Experimental Botany, 2012, 63, 4821-4833.	2.4	49
57	The Impact of Induced Plant Volatiles on Plant-Arthropod Interactions. , 2012, , 15-73.		5
58	A herbivore that manipulates plant defence. Ecology Letters, 2011, 14, 229-236.	3.0	257
59	The transcription factor EMISSION OF BENZENOIDS II activates the MYB <i>ODORANT1</i> promoter at a MYB binding site specific for fragrant petunias. Plant Journal, 2011, 67, 917-928.	2.8	82
60	RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Molecular Biology, 2011, 77, 323-336.	2.0	80
61	Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry, 2011, 72, 68-73.	1.4	120
62	The Tomato Terpene Synthase Gene Family Â. Plant Physiology, 2011, 157, 770-789.	2.3	282
63	PhMYB4 fine-tunes the floral volatile signature of Petunia×hybrida through PhC4H. Journal of Experimental Botany, 2011, 62, 1133-1143.	2.4	121
64	Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit. Plant Cell, 2011, 23, 2738-2753.	3.1	97
65	Methyl salicylate production in tomato affects biotic interactions. Plant Journal, 2010, 62, 124-134.	2.8	77
66	Mutations in Î ³ -aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant Journal, 2010, 64, 318-330.	2.8	102
67	<i>Arabidopsis</i> Small Ubiquitin-Like Modifier Paralogs Have Distinct Functions in Development and Defense Â. Plant Cell, 2010, 22, 1998-2016.	3.1	140
68	The Role of Specific Tomato Volatiles in Tomato-Whitefly Interaction Â. Plant Physiology, 2009, 151, 925-935.	2.3	253
69	A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant Journal, 2009, 60, 292-302.	2.8	110
70	The Arabidopsis <i>her1</i> mutant implicates GABA in <i>E</i> â€2â€hexenal responsiveness. Plant Journal, 2008, 53, 197-213.	2.8	85
71	Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 443-452.	1.2	148
72	Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant Journal, 2007, 52, 752-762.	2.8	87

ROBERT C SCHUURINK

#	Article	IF	CITATIONS
73	Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Molecular Biology, 2007, 64, 251-263.	2.0	185
74	Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends in Plant Science, 2006, 11, 20-25.	4.3	90
75	Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta, 2006, 224, 1197-1208.	1.6	103
76	ODORANT1 Regulates Fragrance Biosynthesis in Petunia Flowers. Plant Cell, 2005, 17, 1612-1624.	3.1	289
77	Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato. Plant Physiology, 2004, 135, 2025-2037.	2.3	337
78	Differential Timing of Spider Mite-Induced Direct and Indirect Defenses in Tomato Plants. Plant Physiology, 2004, 135, 483-495.	2.3	347
79	Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry, 2003, 62, 997-1008.	1.4	248